Math 520a - Homework 3

1. For each of the following four functions find all the singularities and for each singularity identify its nature (removable, pole, essential). For poles find the order and principal part.

$$
z \cos \left(z^{-1}\right), \quad z^{-2} \log (z+1), \quad z^{-1}(\cos (z)-1), \quad \frac{\cos (z)}{\sin (z)\left(e^{z}-1\right)}
$$

2. In class we showed that the gamma function $\Gamma(z)$ can be analytically continued to the complex plane minus the points $0,-1,-2,-3, \cdots$. Show that this function has simple poles at $0,-1,-2,-3, \cdots$ and the residue of the pole at $-n$ is $(-1)^{n} / n!$.
3. Problem 7 on p. 104 of the book.
4. (a) If $f(z)$ has an isolated singularity at z_{0}, prove that $\exp (f(z))$ cannot have a pole there.
(b) Use (a) to show that if f has an isolated singularity at z_{0} and for some positive constant c,

$$
\operatorname{Re} f(z) \leq-c \log \left(\left|z-z_{0}\right|\right)
$$

in a deleted neighborhood of z_{0} then the singularity in f is removable.
5. This is problem 14 on p. 105 in the book and you can find a hint there. Prove that if $f(z)$ is entire and injective (one to one), then there are complex constants $a \neq 0, b$ such that $f(z)=a z+b$.
6. In our proof of Runge's theorem we used the following proposition: Fix a compact subset of the complex plane. Let \mathcal{A} be a collection of continuous functions on K such that if $f, g \in \mathcal{A}$ and $c \in \mathbb{C}$, then $c f, f g, f+g \in \mathcal{A}$. Suppose that a continuous function f can be uniformly approximated on K by functions in \mathcal{A}. Then any polynomial in f can be uniformly approximated on K by functions in \mathcal{A}.
7. Fix $w=r e^{i \theta}$ with $w \neq 0$. Let γ be a curve in $\mathbb{C} \backslash\{0\}$ from 1 to w. Show that there is an integer k such that

$$
\int_{\gamma} \frac{d z}{z}=\log (r)+i \theta+2 \pi i k
$$

