Math 520a - Homework 3

1. For each of the following four functions find all the singularities and for each singularity identify its nature (removable, pole, essential). For poles find the order and principal part.

Solution: $z \cos \left(z^{-1}\right)$: The only singularity is at 0 . Using the power series expansion of $\cos (z)$, you get the Laurent series of $\cos \left(z^{-1}\right)$ about 0 . It is an essential singularty. So $z \cos \left(z^{-1}\right)$ has an essential singularity at 0 .
$z^{-2} \log (z+1)$: The only singularity in the plane with $(-\infty,-1]$ removed is at 0 . We have

$$
\log (z+1)=z-\frac{z^{2}}{2}+\frac{z^{3}}{3} \cdots
$$

So

$$
z^{-2} \log (z+1)=z^{-1}-\frac{1}{2}+\frac{z}{3} \cdots
$$

So at 0 there is a simple pole with principal part $1 / z$.
$z^{-1}(\cos (z)-1)$ The only singularity is at 0 . The power series expansion of $\cos (z)-1$ about 0 is $z^{2} / 2-z^{4} / 4!\cdots$, and so the singularity is removable.
$\frac{\cos (z)}{\sin (z)\left(e^{z}-1\right)}$ The singularities are at the zeroes of $\sin (z)$ and of $e^{z}-1$, i.e., at πn and $i 2 \pi n$ for integral n. These zeroes are all simple, so for $n \neq 0$ we get simple poles and at $z=0$ we get a pole of order 2 . For $n \neq 0$, the residue of the simple pole at πn is

$$
\lim _{z \rightarrow \pi n}(z-\pi n) \frac{\cos (z)}{\sin (z)\left(e^{z}-1\right)}=\frac{\cos (\pi n)}{\cos (\pi n)\left(e^{n \pi}-1\right)}=\frac{1}{e^{n \pi}-1}
$$

For $n \neq 0$, the residue of the simple pole at $2 \pi n i$ is

$$
\lim _{z \rightarrow 2 \pi n i}(z-2 \pi n i) \frac{\cos (z)}{\sin (z)\left(e^{z}-1\right)}=\frac{\cos (2 \pi n i)}{\sin (2 \pi n i)}=-i \operatorname{coth}(2 \pi n)
$$

For the pole of order 2 at $z=0$ you can get the principal part by plugging in power series for the various functions and doing enough of the division to get the z^{-2} and z^{-1} terms. The principal part is $z^{-2}-\frac{1}{2} z^{-1}$.
2. In class we showed that the gamma function $\Gamma(z)$ can be analytically continued to the complex plane minus the points $0,-1,-2,-3, \cdots$. Show that this function has simple poles at $0,-1,-2,-3, \cdots$ and the residue of the pole at $-n$ is $(-1)^{n} / n!$.

Solution: What we did in class showed that $\Gamma(z)$ can be analytically continued to the complex plane minus the points $0,-1,-2,-3, \cdots$, and it satisfies $\Gamma(z)=\Gamma(z+1) / z$ on this domain. By a straightforward induction agrument it satisfies

$$
\Gamma(z)=\frac{\Gamma(z+n+1)}{z(z+1)(z+2) \cdots(z+n)}
$$

on this domain. Now consider this equation for z in $U=\{z: 0<|z+n|<1\}$, a deleted neighborhood of $-n$. On $U, \operatorname{Re}(z+n+1)>0$, so $\Gamma(z+n+1)$ is analytic on U. Clearly $1 /(z+k)$ is analytic on U. So the above equation says $\Gamma(z)=g(z) /(z+n)$ where $g(z)$ is analytic on U. Thus the pole at $-n$ is simple and the residue is $g(-n)$. Since $\Gamma(1)=1$, the residue is

$$
g(-n)=\frac{1}{(-n)(-n+1)(-n+2) \cdots(-n+n-1)}=\frac{(-1)^{n}}{n!}
$$

3. Problem 7 on p. 104 of the book.

Solution: I just give the highlights of the computation. Let $z=e^{i \theta}$. So $d z=i e^{i \theta} d \theta$, i.e., $d \theta=-i d z / z$. Then the given integral becomes

$$
-4 i \int_{\gamma} \frac{z d z}{\left(z^{2}+2 a z+1\right)^{2}}
$$

where γ is the unit circle. There are poles at $-a \pm \sqrt{a^{2}-1}$. Since $a>1$, only the pole at $-a+\sqrt{a^{2}-1}$ is inside circle. The zero in the denominator is of order 2 , so the pole is second order. So its residue is given by

$$
\begin{aligned}
\operatorname{Res}\left(-a+\sqrt{a^{2}-1}\right) & =\frac{d}{d z}\left[\frac{\left(z+a-\sqrt{a^{2}-1}\right)^{2} z}{\left(z^{2}+2 a z+1\right)^{2}}\right]_{z=a-\sqrt{a^{2}-1}} \\
& =\frac{d}{d z}\left[\frac{z}{\left(z+a+\sqrt{a^{2}-1}\right)^{2}}\right]_{z=a-\sqrt{a^{2}-1}}=\frac{a}{4\left(a^{2}-1\right)^{3 / 2}}
\end{aligned}
$$

4. (a) If $f(z)$ has an isolated singularity at z_{0}, prove that $\exp (f(z))$ cannot have a pole there.

Solution: If $f(z)$ has an isolated singularity at z_{0}, then clearly $\exp (f(z))$ does too.

If $f(z)$ has an essential singularity, consider any non-zero $c \in \mathbb{C}$. By the Casorati-Weierstrass theorem, there is a sequence $z_{n} \rightarrow z_{0}$ such that $f\left(z_{n}\right) \rightarrow \log (c)$. So $\exp \left(f\left(z_{n}\right)\right) \rightarrow c$. Since this is true for all non-zero c, $\exp (f(z))$ must have an essential singularity at z_{0}.

Finally we will show that if f has a pole at z_{0}, then $\exp (f(z))$ has an essential singularity there. Let n be the order of the pole of f. Then

$$
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}
$$

where $g(z)$ is analytic and non-zero on a deleted neighborhood of z_{0}. Let $g\left(z_{0}\right)=r e^{i \theta}$. Consider the sequence

$$
z_{k}=z_{0}+\frac{\exp (i \theta / n)}{n}
$$

Then $f\left(z_{k}\right)=g\left(z_{k}\right) \exp (-i \theta) n^{n}$. Since $g\left(z_{k}\right) \rightarrow r e^{i \theta}, \exp \left(f\left(z_{k}\right)\right)$ converges to ∞. So the singularity for $\exp (f)$ is not removable. If we consider

$$
w_{k}=z_{0}+\frac{\exp (i(\pi+\theta) / n)}{n}
$$

then we see that $\exp \left(f\left(z_{k}\right)\right)$ converges to zero. Thus the singularity for $\exp (f)$ is essential.
(b) Use (a) to show that if f has an isolated singularity at z_{0} and for some positive constant c,

$$
\operatorname{Ref}(z) \leq-c \log \left(\left|z-z_{0}\right|\right)
$$

in a deleted neighborhood of z_{0} then the singularity in f is removable.
Solution: The bound on f implies

$$
|\exp (f(z))|=\exp \left(\operatorname{Re}(f(z)) \leq \exp \left(-c \log \left(\left|z-z_{0}\right|\right)\right)=\left|z-z_{0}\right|^{-c}\right.
$$

So for large enough integers n,

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n} \exp (f(z))=0
$$

This implies that the singularity of $\exp (f(z))$ is either a pole or removable. By (a) it cannot be a pole, so it is removable. From part (a) we know that $\exp (f(z))$ can have a removable singularity only if $f(z)$ has a removable singularity.
5. This is problem 14 on p. 105 in the book and you can find a hint there. Prove that if $f(z)$ is entire and injective (one to one), then there are complex constants $a \neq 0, b$ such that $f(z)=a z+b$.

Solution: Since f is entire it has a power series about the origin that converges on the entire complex plane. First suppose this power series is a polynomial $P(z)$. If $P(z)$ has two or more distince roots, then it is not injective since is sends two different numbers to 0 . So it must have a single root of order n where n is the degree of P. So $P(z)=c\left(z-z_{0}\right)^{n}$. But then $z_{0}+\exp (i k 2 \pi / n)$ for $k=0,1, \cdots, n-1$ all get mapped to the same image. So n can only be 1 . So $P(z)$ is linear $a z+b$ and clearly a cannot be zero.

Now suppose f is not a polynomial. Then $g(z)=f(1 / z)$ has an essential singularity at 0 . By Casorati-Weierstrass theorem g maps $\{z: 0<|z|<r\}$ to a dense subset of \mathbb{C} for all $r>0$. Now pick a point w_{0} such that that $f\left(w_{0}\right) \neq 0$. Then take $r=\left|f\left(w_{0}\right)\right| / 2$. By the density, we can find a sequence z_{n} with $0<\left|z_{n}\right|<1$ such that $g\left(z_{n}\right)$ converges to $f\left(w_{0}\right)$. Since the sequence z_{n} is bounded, it has a convergent subsequence $z_{n_{k}}$ converges to some w. Note that $|w| \leq r / 2$. By continuity $g(w)=f\left(w_{0}\right)$. So $f(1 / w)=f\left(w_{0}\right)$. Since f is injective, $1 / w=w_{0}$. But $\left|w_{0}\right|=r$ and $|w| \leq r / 2$, a contradiction.
6. In our proof of Runge's theorem we used the following proposition: Fix a compact subset of the complex plane. Let \mathcal{A} be a collection of continuous functions on K such that if $f, g \in \mathcal{A}$ and $c \in \mathbb{C}$, then $c f, f g, f+g \in \mathcal{A}$. Suppose that a continuous function f can be uniformly approximated on K by functions in \mathcal{A}. Then any polynomial in f can be uniformly approximated on K by functions in \mathcal{A}.

Solution: Let $P(z)$ be a polynomial. We want to show that $P(f(z))$ can be uniformly approximated on K by functions in \mathcal{A}. Let $\epsilon>0$.

Since f is continuous and K is compact, $f(K)$ is compact. So $P(z)$ is uniformly continuous on $f(K)$. So there is a $\delta>0$ so that $z, w \in f(K)$ and $|z-w|<\delta$ implies $|P(z)-P(w)|<\epsilon$. Let $g \in \mathcal{A}$ be such that $|f(z)-g(z)|<\delta$ for $z \in K$. Then since $f(z), g(z) \in f(K)$, this implies
$|P(f(z))-P(g(z))|<\epsilon$. The properties on \mathcal{A} imply that $P(g(z)) \in \mathcal{A}$. So this completes the proof.
7. Fix $w=r e^{i \theta}$ with $w \neq 0$. Let γ be a curve in $\mathbb{C} \backslash\{0\}$ from 1 to w. Show that there is an integer k such that

$$
\int_{\gamma} \frac{d z}{z}=\log (r)+i \theta+2 \pi i k
$$

Solution: I assume $r \geq 1$. The changes for the other case of $r<1$ are minor. Let γ_{1} be the contour that is the line segment from 1 to $r: \gamma_{1}(t)=t, 1 \leq t \leq r$. Then $\int_{\gamma_{1}} d z / z$ is $\log (r)$.

Let γ_{2} be the contour that is the subarc of the circle of radius r from r to $r e^{i \theta}$. So $\gamma_{2}(t)=r e^{i t}, 0 \leq t \leq \theta$. Then

$$
\int_{\gamma_{2}} \frac{d z}{z}=\int_{0}^{\theta} \frac{\gamma_{2}^{\prime}(t)}{\gamma_{2}(t)} d t=\int_{0}^{\theta} i d t=i \theta
$$

Let $\gamma-\gamma_{2}-\gamma_{1}$ be the contour that follows γ from 1 to w, then follows γ_{2} backwards from w to r and then follows γ_{1} backwards from r to 1 . This is a closed contour, so the integral of $1 / z$ around this contour is $2 \pi i k$, where k is the winding number of this contour. So

$$
\int_{\gamma} \frac{d z}{z}=2 \pi i k+\int_{\gamma_{1}} \frac{d z}{z}+\int_{\gamma_{2}} \frac{d z}{z}=2 \pi i k+\log (r)+i \theta
$$

