Math 520a - Homework 3

1. For each of the following four functions find all the singularities and for
each singularity identify its nature (removable, pole, essential). For poles
find the order and principal part.

Solution: zcos(z7!) : The only singularity is at 0. Using the power series

expansion of cos(z), you get the Laurent series of cos(z7!') about 0. It is an
essential singularty. So z cos(z7!) has an essential singularity at 0.

272log(z+1) : The only singularity in the plane with (—oo, —1] removed
is at 0. We have
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So at 0 there is a simple pole with principal part 1/z.

27 (cos(z) — 1) The only singularity is at 0. The power series expansion
of cos(z) — 1 about 0 is 22/2 — 2*/4!- -, and so the singularity is removable.

% The singularities are at the zeroes of sin(z) and of e* — 1, i.e.,
at mn and i27n for integral n. These zeroes are all simple, so for n # 0 we
get simple poles and at z = 0 we get a pole of order 2. For n # 0, the residue

of the simple pole at mn is

T cos(z) _ cos(mn) _ 1
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For n # 0, the residue of the simple pole at 27ni is

cos(z) ~ cos(2mni)

lim (z — 27ni) = —i coth(27mn)

2—2mni sin(z)(e* —1)  sin(27ni)
For the pole of order 2 at z = 0 you can get the principal part by plugging
in power series for the various functions and doing enough of the division to

get the 272 and 2! terms. The principal part is 272 — 3271,



2. In class we showed that the gamma function I'(z) can be analytically
continued to the complex plane minus the points 0, —1,—2,—3,---. Show
that this function has simple poles at 0,—1,—2,—3,--- and the residue of
the pole at —n is (—1)"/nl.

Solution: What we did in class showed that I'(z) can be analytically contin-
ued to the complex plane minus the points 0, —1, —2, —3, - - -, and it satisfies
I'(z) ='(2+1)/z on this domain. By a straightforward induction agrument
it satisfies
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on this domain. Now consider this equation for 2 in U = {z : 0 < |z+n| < 1},
a deleted neighborhood of —n. On U, Re(z +n+1) > 0, s0 I'(z +n + 1)
is analytic on U. Clearly 1/(z + k) is analytic on U. So the above equation
says ['(z) = g(2)/(z + n) where g(z) is analytic on U. Thus the pole at —n
is simple and the residue is g(—n). Since I'(1) = 1, the residue is

1 (—1)

g(_n) = (_n)(_n + 1)(_n+ 2) - (_n—|-n — 1) - n!

3. Problem 7 on p. 104 of the book.

Solution: I just give the highlights of the computation. Let z = €. So

dz = ie?df, i.e., d) = —idz/z. Then the given integral becomes
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where v is the unit circle. There are poles at —a + v/a? — 1. Since a > 1,
only the pole at —a + v/a?> — 1 is inside circle. The zero in the denominator
is of order 2, so the pole is second order. So its residue is given by
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4. (a) If f(2) has an isolated singularity at zg, prove that exp(f(z)) cannot
have a pole there.

Solution: If f(z) has an isolated singularity at zp, then clearly exp(f(z))
does too.

If f(z) has an essential singularity, consider any non-zero ¢ € C. By
the Casorati-Weierstrass theorem, there is a sequence z, — zp such that
f(zn) — log(c). So exp(f(z,)) — c. Since this is true for all non-zero c,
exp(f(z)) must have an essential singularity at zo.

Finally we will show that if f has a pole at z;, then exp(f(z)) has an
essential singularity there. Let n be the order of the pole of f. Then
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where ¢(z) is analytic and non-zero on a deleted neighborhood of z,. Let
g(z0) = re®. Consider the sequence
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Then f(z) = g(21) exp(—if)n™. Since g(z;,) — re®, exp(f(z)) converges to
00. So the singularity for exp(f) is not removable. If we consider

N exp(i(m 4+ 0)/n)

Wk = 20

then we see that exp(f(zx)) converges to zero. Thus the singularity for exp(f)
is essential.

(b) Use (a) to show that if f has an isolated singularity at zo and for some
positive constant c,

Ref(z) < —clog(|z — 20])
in a deleted neighborhood of zy then the singularity in f is removable.
Solution: The bound on f implies
|exp(f(2))| = exp(Re(f(2)) < exp(—clog(|z — z|)) = |z — 20|~
So for large enough integers n,

lim (z — z)" exp(f(z)) =0

z—20



This implies that the singularity of exp(f(z)) is either a pole or removable.
By (a) it cannot be a pole, so it is removable. From part (a) we know that
exp(f(z)) can have a removable singularity only if f(z) has a removable
singularity.

5. This is problem 14 on p. 105 in the book and you can find a hint there.
Prove that if f(2) is entire and injective (one to one), then there are complex
constants a # 0, b such that f(z) = az +b.

Solution: Since f is entire it has a power series about the origin that con-
verges on the entire complex plane. First suppose this power series is a
polynomial P(z). If P(z) has two or more distince roots, then it is not in-
jective since is sends two different numbers to 0. So it must have a single
root of order n where n is the degree of P. So P(z) = ¢(z — z)". But then
2o + exp(ik2m/n) for k = 0,1,---,n — 1 all get mapped to the same image.
So n can only be 1. So P(z) is linear az + b and clearly a cannot be zero.
Now suppose f is not a polynomial. Then g(z) = f(1/z) has an essential
singularity at 0. By Casorati-Weierstrass theorem g maps {z : 0 < |z] < r}
to a dense subset of C for all » > 0. Now pick a point wy such that that
f(wp) # 0. Then take r = | f(wy)|/2. By the density, we can find a sequence
zp, with 0 < |z,| < 1 such that g(z,) converges to f(wy). Since the sequence
zp 1s bounded, it has a convergent subsequence z,, converges to some w.
Note that |w| < r/2. By continuity g(w) = f(wp). So f(1/w) = f(wo).
Since f is injective, 1/w = wy. But |wg| = r and |w| < r/2, a contradiction.

6. In our proof of Runge’s theorem we used the following proposition: Fix
a compact subset of the complex plane. Let A be a collection of continuous
functions on K such that if f,g € A and ¢ € C, then cf, fg,f + g € A.
Suppose that a continuous function f can be uniformly approximated on K
by functions in A. Then any polynomial in f can be uniformly approximated
on K by functions in A.

Solution: Let P(z) be a polynomial. We want to show that P(f(z)) can be
uniformly approximated on K by functions in A. Let € > 0.

Since f is continuous and K is compact, f(K) is compact. So P(z) is
uniformly continuous on f(K). So there is a 6 > 0 so that z,w € f(K)
and |z — w| < § implies |P(z) — P(w)| < e. Let g € A be such that
|f(z) — g(2)] < 0 for z € K. Then since f(z),g(z) € f(K), this implies



|P(f(2)) — P(g9(2))| < e. The properties on A imply that P(g(z)) € A. So
this completes the proof.

7. Fix w = re? with w # 0. Let v be a curve in C \ {0} from 1 to w. Show
that there is an integer k£ such that

d
5 — log(r) + i6 + 2nik

y

Solution: I assume r > 1. The changes for the other case of r < 1 are minor.
Let 71 be the contour that is the line segment from 1 tor: v (t) =¢,1 <t <.
Then [ dz/z is log(r).

Let 75 be the contour that is the subarc of the circle of radius r from r
to re®. So v,(t) = re®,0 <t < 6. Then
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Let v — v — 41 be the contour that follows ~ from 1 to w, then follows
9 backwards from w to r and then follows v, backwards from r to 1. This
is a closed contour, so the integral of 1/z around this contour is 2mik, where
k is the winding number of this contour. So
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