
Math 520a - Homework 3

1. For each of the following four functions find all the singularities and for
each singularity identify its nature (removable, pole, essential). For poles
find the order and principal part.

Solution: z cos(z−1) : The only singularity is at 0. Using the power series

expansion of cos(z), you get the Laurent series of cos(z−1) about 0. It is an
essential singularty. So z cos(z−1) has an essential singularity at 0.

z−2 log(z +1) : The only singularity in the plane with (−∞,−1] removed
is at 0. We have

log(z + 1) = z − z2

2
+

z3

3
· · ·

So

z−2 log(z + 1) = z−1 − 1

2
+

z

3
· · ·

So at 0 there is a simple pole with principal part 1/z.

z−1(cos(z) − 1) The only singularity is at 0. The power series expansion
of cos(z) − 1 about 0 is z2/2− z4/4! · · ·, and so the singularity is removable.

cos(z)
sin(z)(ez−1)

The singularities are at the zeroes of sin(z) and of ez − 1, i.e.,
at πn and i2πn for integral n. These zeroes are all simple, so for n 6= 0 we
get simple poles and at z = 0 we get a pole of order 2. For n 6= 0, the residue
of the simple pole at πn is

lim
z→πn

(z − πn)
cos(z)

sin(z)(ez − 1)
=

cos(πn)

cos(πn)(enπ − 1)
=

1

enπ − 1

For n 6= 0, the residue of the simple pole at 2πni is

lim
z→2πni

(z − 2πni)
cos(z)

sin(z)(ez − 1)
=

cos(2πni)

sin(2πni)
= −i coth(2πn)

For the pole of order 2 at z = 0 you can get the principal part by plugging
in power series for the various functions and doing enough of the division to
get the z−2 and z−1 terms. The principal part is z−2 − 1

2
z−1.
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2. In class we showed that the gamma function Γ(z) can be analytically
continued to the complex plane minus the points 0,−1,−2,−3, · · ·. Show
that this function has simple poles at 0,−1,−2,−3, · · · and the residue of
the pole at −n is (−1)n/n!.

Solution: What we did in class showed that Γ(z) can be analytically contin-
ued to the complex plane minus the points 0,−1,−2,−3, · · ·, and it satisfies
Γ(z) = Γ(z +1)/z on this domain. By a straightforward induction agrument
it satisfies

Γ(z) =
Γ(z + n + 1)

z(z + 1)(z + 2) · · · (z + n)

on this domain. Now consider this equation for z in U = {z : 0 < |z+n| < 1},
a deleted neighborhood of −n. On U , Re(z + n + 1) > 0, so Γ(z + n + 1)
is analytic on U . Clearly 1/(z + k) is analytic on U . So the above equation
says Γ(z) = g(z)/(z + n) where g(z) is analytic on U . Thus the pole at −n
is simple and the residue is g(−n). Since Γ(1) = 1, the residue is

g(−n) =
1

(−n)(−n + 1)(−n + 2) · · · (−n + n − 1)
=

(−1)n

n!

3. Problem 7 on p. 104 of the book.

Solution: I just give the highlights of the computation. Let z = eiθ. So
dz = ieiθdθ, i.e., dθ = −idz/z. Then the given integral becomes

−4i

∫

γ

zdz

(z2 + 2az + 1)2

where γ is the unit circle. There are poles at −a ±
√

a2 − 1. Since a > 1,
only the pole at −a +

√
a2 − 1 is inside circle. The zero in the denominator

is of order 2, so the pole is second order. So its residue is given by

Res(−a +
√

a2 − 1) =
d

dz

[

(z + a −
√

a2 − 1)2z

(z2 + 2az + 1)2

]

z=a−
√

a2−1

=
d

dz

[

z

(z + a +
√

a2 − 1)2

]

z=a−
√

a2−1

=
a

4(a2 − 1)3/2
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4. (a) If f(z) has an isolated singularity at z0, prove that exp(f(z)) cannot
have a pole there.

Solution: If f(z) has an isolated singularity at z0, then clearly exp(f(z))
does too.

If f(z) has an essential singularity, consider any non-zero c ∈ C. By
the Casorati-Weierstrass theorem, there is a sequence zn → z0 such that
f(zn) → log(c). So exp(f(zn)) → c. Since this is true for all non-zero c,
exp(f(z)) must have an essential singularity at z0.

Finally we will show that if f has a pole at z0, then exp(f(z)) has an
essential singularity there. Let n be the order of the pole of f . Then

f(z) =
g(z)

(z − z0)n

where g(z) is analytic and non-zero on a deleted neighborhood of z0. Let
g(z0) = reiθ. Consider the sequence

zk = z0 +
exp(iθ/n)

n

Then f(zk) = g(zk) exp(−iθ)nn. Since g(zk) → reiθ, exp(f(zk)) converges to
∞. So the singularity for exp(f) is not removable. If we consider

wk = z0 +
exp(i(π + θ)/n)

n

then we see that exp(f(zk)) converges to zero. Thus the singularity for exp(f)
is essential.
(b) Use (a) to show that if f has an isolated singularity at z0 and for some
positive constant c,

Ref(z) ≤ −c log(|z − z0|)

in a deleted neighborhood of z0 then the singularity in f is removable.

Solution: The bound on f implies

| exp(f(z))| = exp(Re(f(z)) ≤ exp(−c log(|z − z0|)) = |z − z0|−c

So for large enough integers n,

lim
z→z0

(z − z0)
n exp(f(z)) = 0
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This implies that the singularity of exp(f(z)) is either a pole or removable.
By (a) it cannot be a pole, so it is removable. From part (a) we know that
exp(f(z)) can have a removable singularity only if f(z) has a removable
singularity.

5. This is problem 14 on p. 105 in the book and you can find a hint there.
Prove that if f(z) is entire and injective (one to one), then there are complex
constants a 6= 0, b such that f(z) = az + b.

Solution: Since f is entire it has a power series about the origin that con-
verges on the entire complex plane. First suppose this power series is a
polynomial P (z). If P (z) has two or more distince roots, then it is not in-
jective since is sends two different numbers to 0. So it must have a single
root of order n where n is the degree of P . So P (z) = c(z − z0)

n. But then
z0 + exp(ik2π/n) for k = 0, 1, · · · , n − 1 all get mapped to the same image.
So n can only be 1. So P (z) is linear az + b and clearly a cannot be zero.

Now suppose f is not a polynomial. Then g(z) = f(1/z) has an essential
singularity at 0. By Casorati-Weierstrass theorem g maps {z : 0 < |z| < r}
to a dense subset of C for all r > 0. Now pick a point w0 such that that
f(w0) 6= 0. Then take r = |f(w0)|/2. By the density, we can find a sequence
zn with 0 < |zn| < 1 such that g(zn) converges to f(w0). Since the sequence
zn is bounded, it has a convergent subsequence znk

converges to some w.
Note that |w| ≤ r/2. By continuity g(w) = f(w0). So f(1/w) = f(w0).
Since f is injective, 1/w = w0. But |w0| = r and |w| ≤ r/2, a contradiction.

6. In our proof of Runge’s theorem we used the following proposition: Fix
a compact subset of the complex plane. Let A be a collection of continuous
functions on K such that if f, g ∈ A and c ∈ C, then cf, fg, f + g ∈ A.
Suppose that a continuous function f can be uniformly approximated on K
by functions in A. Then any polynomial in f can be uniformly approximated
on K by functions in A.

Solution: Let P (z) be a polynomial. We want to show that P (f(z)) can be
uniformly approximated on K by functions in A. Let ǫ > 0.

Since f is continuous and K is compact, f(K) is compact. So P (z) is
uniformly continuous on f(K). So there is a δ > 0 so that z, w ∈ f(K)
and |z − w| < δ implies |P (z) − P (w)| < ǫ. Let g ∈ A be such that
|f(z) − g(z)| < δ for z ∈ K. Then since f(z), g(z) ∈ f(K), this implies
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|P (f(z)) − P (g(z))| < ǫ. The properties on A imply that P (g(z)) ∈ A. So
this completes the proof.

7. Fix w = reiθ with w 6= 0. Let γ be a curve in C \ {0} from 1 to w. Show
that there is an integer k such that

∫

γ

dz

z
= log(r) + iθ + 2πik

Solution: I assume r ≥ 1. The changes for the other case of r < 1 are minor.
Let γ1 be the contour that is the line segment from 1 to r: γ1(t) = t, 1 ≤ t ≤ r.
Then

∫

γ1

dz/z is log(r).
Let γ2 be the contour that is the subarc of the circle of radius r from r

to reiθ. So γ2(t) = reit, 0 ≤ t ≤ θ. Then

∫

γ2

dz

z
=

∫ θ

0

γ′
2(t)

γ2(t)
dt =

∫ θ

0

idt = iθ

Let γ − γ2 − γ1 be the contour that follows γ from 1 to w, then follows
γ2 backwards from w to r and then follows γ1 backwards from r to 1. This
is a closed contour, so the integral of 1/z around this contour is 2πik, where
k is the winding number of this contour. So

∫

γ

dz

z
= 2πik +

∫

γ1

dz

z
+

∫

γ2

dz

z
= 2πik + log(r) + iθ
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