Math 520a - Homework 4

1. Problem 5 on page 103 in the book.
2. Problem 12 on page 105 in the book.
3. Suppose that f is analytic on some annulus centered at 0 . So it has a Laurent series of the form

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

Let

$$
\begin{aligned}
& R_{1}=\inf \left\{r_{1}: \text { for some } r_{2}>0, f \text { is analytic on } r_{1}<|z|<r_{2}\right\} \\
& R_{2}=\sup \left\{r_{2}: \text { for some } r_{1}>0, \text { f is analytic on } r_{1}<|z|<r_{2}\right\}
\end{aligned}
$$

Prove that

$$
\begin{aligned}
& R_{1}=\limsup _{n \rightarrow \infty}\left|a_{-n}\right|^{1 / n} \\
& \frac{1}{R_{2}}=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}
\end{aligned}
$$

4. Let f and g be analytic on an open set containing the closed disc $|z| \leq 1$. Suppose f has a simple zero at $z=0$ and has no other zeroes in the closed disc. Define for complex w,

$$
f_{w}(z)=f(z)+w g(z)
$$

Prove that there is an $\epsilon>0$ such that for $|w|<\epsilon, f_{w}$ has a unique zero z_{w} in the closed disc and the mapping $w \rightarrow z_{w}$ is continuous.
5. Let f be analytic on the complex plane except for isolated singularites at $z_{1}, z_{2}, \cdots, z_{m}$. Define the residue of f at ∞ to be the residue of $-z^{-2} f(1 / z)$ at $z=0$. Let $R=\max _{j}\left|z_{j}\right|$.
(a) Express the residue at ∞ in terms of the coefficients of the Laurent series of f in the region $\{z: R<|z|\}$.
(b) What is the relation of the residue at ∞ to the integral

$$
\frac{1}{2 \pi i} \int_{\gamma} f(z) d z
$$

where $\gamma(t)=r e^{i t}, 0 \leq t \leq 2 \pi$ for $r>R$?
(c) Show that

$$
\operatorname{Res}(f, \infty)=-\sum_{k=1}^{m} \operatorname{Res}\left(f, z_{k}\right)
$$

6. Let

$$
f(z)=\frac{\cos z}{z\left(1+z^{2}\right)}
$$

(a) Find the z^{5} term in the Laurent series of f in the annulus $\{z: 0<|z|<1\}$.
(b) Find the z^{-5} term in the Laurent series of f in the annulus $\{z: 1<|z|<\infty\}$.
7. Let $\bar{D}=\{z:|z| \leq R\}$. Let f and g be analytic on an open set containing \bar{D}. Suppose that $|f(z)|=|g(z)|$ when $|z|=R$, and that f and g never vanish on \bar{D}. Prove that there is a constant c with $|c|=1$ such that $f(z)=c g(z)$.

