Math 520a - Homework 4-Selected solutions

1. Problem 5 on page 103 in the book.

Solution: I'll just make a comment on this one. You close the contour with a semicircle in either the upper or lower half plane depending on the sign of ϵ. Most people worked out both cases. But note that the change of variables $x \rightarrow-x$ in the original integral shows that the integral is equal to the integral with ϵ replaced by $-\epsilon$. In other words the integral is an even function of ϵ. So you only have to compute it for one case, e.g., $\epsilon \geq 0$.
2. Problem 12 on page 105 in the book.

Solution: Inside the given circle there is a second order pole at $-u$ and first order poles at k for $|k| \leq N$. The residue from the pole at $-u$ leads to the $\pi^{2} / \sin ^{2}(\pi u)$ and the sum of the other residues leads to the partial sum

$$
\sum_{n=-N}^{N} \frac{1}{(u+n)^{2}}
$$

This part was pretty straightforward and I won't write it out. The harder part is showing that the integral around the contour converges to zero as $N \rightarrow \infty$.

We will show that there is a constant M (independent of N) such that $|\cot (\pi z)| \leq M$ for all N and $|z|=N+1 / 2$.

$$
\cot (\pi z)=\frac{\cos (\pi z)}{\sin (\pi z)}=i \frac{e^{i \pi z}+e^{-i \pi z}}{e^{i \pi z}-e^{-i \pi z}}=i \frac{e^{2 i \pi z}+1}{e^{2 i \pi z}-1}
$$

Let $z=x+i y$. Then this becomes

$$
i \frac{e^{2 i \pi x-2 \pi y}+1}{e^{2 i \pi x-2 \pi y}-1}
$$

Since $\cot (\pi z)$ is an odd function, we need only consider z in the upper half plane, ie., $y \geq 0$. If x is within $1 / 4$ of $N+1 / 2$ for some integer N, then $\cos (2 \pi x) \leq 0$. So the real part of $e^{2 i \pi x-2 \pi y}$ is ≤ 0. Hence $\left|e^{2 i \pi x-2 \pi y}-1\right| \geq 1$. The numerator is trivially bounded in modulus by 2 . So $|\cot (\pi z)| \leq 2$ on the vertical strips given by $|\operatorname{Re}(z)-(N+1 / 2)|<1 / 4$ for some N. The parts
of the circle that do not lie in these strips are bounded away from the real axis, i.e., there is a $\delta>0$ such that they lie in $\{z:|\operatorname{Im}(z)| \geq \delta\}$. For $y \geq \delta$,

$$
\left|i \frac{e^{2 i \pi x-2 \pi y}+1}{e^{2 i \pi x-2 \pi y}-1}\right| \leq \frac{e^{-2 \pi y}+1}{1-e^{-2 \pi y}} \leq \frac{e^{-2 \pi \delta}+1}{1-e^{-2 \pi \delta}}
$$

With this bound on $|\cot (\pi z)|$, showing the integral around the circle of radius $N+1 / 2$ goes to zero as $N \rightarrow \infty$ is straightforward.
3. Suppose that f is analytic on some annulus centered at 0 . So it has a Laurent series of the form

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

Let

$$
\begin{aligned}
& R_{1}=\inf \left\{r_{1}: \text { for some } r_{2}>0, \text { f is analytic on } r_{1}<|z|<r_{2}\right\} \\
& R_{2}=\sup \left\{r_{2}: \text { for some } r_{1}>0, \text { f is analytic on } r_{1}<|z|<r_{2}\right\}
\end{aligned}
$$

Prove that

$$
\begin{aligned}
R_{1} & =\limsup _{n \rightarrow \infty}\left|a_{-n}\right|^{1 / n} \\
\frac{1}{R_{2}} & =\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}
\end{aligned}
$$

Solution: This problem was so poorly stated that everyone missed the point of I was trying to get at. So I gave everyone full credit on the problem and wrote comments on most papers. I will reassign this problem (hopefully better stated) in the problem set after the midterm. Here is an attempt at a better statement of the problem:

Suppose that f is analytic on the annulus $\left\{z: \rho_{1}<|z|<\rho_{2}\right\}$. From what we did in class we know that it has a Laurent series of the form

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

meaning that the series converges to $f(z)$ on the annulus. Moreover the convergence is absolute.

Define

$$
\begin{aligned}
& R_{1}=\limsup _{n \rightarrow \infty}\left|a_{-n}\right|^{1 / n} \\
& \frac{1}{R_{2}}=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}
\end{aligned}
$$

(a) Prove that $R_{1} \leq \rho_{1}$ and that $R_{2} \geq \rho_{2}$.
(b) Prove that the Laurent series converges absolutely on $\left\{z: R_{1}<|z|<R_{2}\right\}$ and uniformly on compact subsets of this set, and so defines an analytic continuation of f to this annulus.
(c) Prove that if f has an analytic continuation to an annulus $\left\{z: r_{1}<|z|<\right.$ $\left.r_{2}\right\}$ with $r_{1} \leq R_{1}$ and $r_{2} \geq R_{2}$, then $r_{1}=R_{1}$ and $r_{2}=R_{2}$. In other words the annulus in part (b) is the largest annulus (about 0) containing the original annulus on which f has an analytic continuation.
4. Let f and g be analytic on an open set containing the closed disc $|z| \leq 1$. Suppose f has a simple zero at $z=0$ and has no other zeroes in the closed disc. Define for complex w,

$$
f_{w}(z)=f(z)+w g(z)
$$

Prove that there is an $\epsilon>0$ such that for $|w|<\epsilon, f_{w}$ has a unique zero z_{w} in the closed disc and the mapping $w \rightarrow z_{w}$ is continuous.

Solution: Let $M=\sup |g(z)|, m=\inf |f(z)|$ where the sup and \inf are over the unit circle. Since the circle is compact and both functions are continuous, the sup and inf are attained and so $M<\infty$ and $m>0$. Assume $M>0$. (Otherwise g vanishes on the unit circle and so must be the zero function.) Define $\epsilon=m / M$. Let w be such that $|w|<\epsilon$. We apply Rouché's theorem to the functions $f(z)$ and $w g(z)$. We have $|w g(z)|<\epsilon M=m$ and $|f(z)| \geq m$ on the circle, so $|w g(z)|<|f(z)|$ on the circle. By the theorem $f(z)$ and $f(z)+w g(z)$ have the same number of zeros inside the circle. So $f(z)+w g(z)$ has exactly one zero, z_{w}.

To prove z_{w} is continuous in w, fix w with $|w|<\epsilon$ and let w_{n} be a sequence converging to w. Suppose $z_{w_{n}}$ does not converge to z_{w}. Then there
is an $\epsilon>0$ and a subsequence of $z_{w_{n}}$ whose distance to z_{w} is always at least ϵ. This subsequence is in the unit disc, a bounded set, so it has a subsequence which converges to something, call it z^{\prime}, in the closed unit disc. Note that z^{\prime} cannot be z_{w}. Let u_{k} be the corresponding subsequence of the subsequence of w_{n}. So $z_{u_{k}}$ converges to z^{\prime}. Now $w_{u_{k}}$ converges to w, so $f_{w_{u_{k}}}\left(z_{u_{k}}\right)$ converges to $f_{w}\left(z^{\prime}\right)$. But $f_{w_{u_{k}}}\left(z_{u_{k}}\right)=0$ for all k, so z^{\prime} is a root of f_{w}. By the bounds in the first paragraph, f_{w} is not zero on the boundary of the disc, so z^{\prime} is in the open unit disc. But f_{w} has only one root in this disc, and it is z_{w}. Contradiction.
5. Let f be analytic on the complex plane except for isolated singularites at $z_{1}, z_{2}, \cdots, z_{m}$. Define the residue of f at ∞ to be the residue of $-z^{-2} f(1 / z)$ at $z=0$. Let $R=\max _{j}\left|z_{j}\right|$.
(a) Express the residue at ∞ in terms of the coefficients of the Laurent series of f in the region $\{z: R<|z|\}$.

Solution: Let

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

be the Laurent series of f for $|z|>R$. Then for $|z|<1 / R$,

$$
f(1 / z)=\sum_{n=-\infty}^{\infty} a_{n} z^{-n}
$$

So

$$
-z^{-2} f(1 / z)=-\sum_{n=-\infty}^{\infty} a_{n} z^{-n-2}
$$

The residue of this is the coef of the $1 / z$ term. This is when $n=-1$ and the residue at ∞ is $-a_{-1}$.
(b) What is the relation of the residue at ∞ to the integral

$$
\frac{1}{2 \pi i} \int_{\gamma} f(z) d z
$$

where $\gamma(t)=r e^{i t}, 0 \leq t \leq 2 \pi$ for $r>R$?

Solution: The Laurent series converges uniformly on the circle of radius r, so we can integrate it term by term to get

$$
\frac{1}{2 \pi i} \int_{\gamma} f(z) d z=a_{-1}
$$

So this integral is minus the residue at ∞.
(c) Show that

$$
\operatorname{Res}(f, \infty)=-\sum_{k=1}^{m} \operatorname{Res}\left(f, z_{k}\right)
$$

Solution: The contour in part (b) encloses all the singularites with winding number 1 , so by the residue theorem the integral in part (b) is $\sum_{k=1}^{m} \operatorname{Res}\left(f, z_{k}\right)$, and the equation in (c) follows.
6. Let

$$
f(z)=\frac{\cos z}{z\left(1+z^{2}\right)}
$$

(a) Find the z^{5} term in the Laurent series of f in the annulus $\{z: 0<|z|<1\}$.

Solution:

$$
\begin{gathered}
\cos (z)=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots \\
\frac{1}{1+z^{2}}=1-\frac{1}{z^{2}}+\frac{1}{z^{4}}-\frac{1}{z^{6}} \cdots
\end{gathered}
$$

So the power series of $\cos z /\left(1+z^{2}\right)$ about the origin is

$$
\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right)\left(1-\frac{1}{z^{2}}+\frac{1}{z^{4}}-\frac{1}{z^{6}} \cdots\right)
$$

The z^{5} term in the Laurent series we want will be $1 / z$ times the z^{6} term in this power series which works out to be $(-1-1 / 2-1 / 24-1 / 720) z^{5}=-\frac{1111}{720} z^{5}$. (b) Find the z^{-5} term in the Laurent series of f in the annulus $\{z: 1<|z|<\infty\}$.

Solution: If we take $r>1$, the coefficient of z^{5} in the Laurent series is given by

$$
\frac{1}{2 \pi i} \int_{|z|=r} z^{4} f(z) d z=\frac{1}{2 \pi i} \int_{|z|=r} \frac{z^{3} \cos (z)}{1+z^{2}} d z
$$

You can compute this integral by the residue theorem and find $\cos (i)=$ $\cosh (1)$.
7. Let $\bar{D}=\{z:|z| \leq R\}$. Let f and g be analytic on an open set containing \bar{D}. Suppose that $|f(z)|=|g(z)|$ when $|z|=R$, and that f and g never vanish on \bar{D}. Prove that there is a constant c with $|c|=1$ such that $f(z)=c g(z)$ for $|z| \leq 1$.

Solution: Let $h(z)=f(z) / g(z)$. Since g does not vanish on $D=\{z:|z|<$ $R\}, h$ is analytic on D. On the boundary of D we have $|h(z)|=1$. So by the maximum-modulus theorem we have $|h(z)| \leq 1$ on D, i.e., $|f(z)| \leq|g(z)|$ on D. The same argument with f and g interchanged shows $|g(z)| \leq|f(z)|$ on D. So $|g(z)|=|f(z)|$ on D. Thus the analytic function h attains it maximum modulus at an interior point (in fact at every interior point) and so must be a constant. So $f(z)=c g(z)$ and $|c|$ must be 1 .

