
Math 520a - Homework 4 - Selected solutions

1. Problem 5 on page 103 in the book.

Solution: I’ll just make a comment on this one. You close the contour
with a semicircle in either the upper or lower half plane depending on the
sign of ǫ. Most people worked out both cases. But note that the change of
variables x → −x in the original integral shows that the integral is equal to
the integral with ǫ replaced by −ǫ. In other words the integral is an even
function of ǫ. So you only have to compute it for one case, e.g., ǫ ≥ 0.

2. Problem 12 on page 105 in the book.

Solution: Inside the given circle there is a second order pole at −u and
first order poles at k for |k| ≤ N . The residue from the pole at −u leads to
the π2/ sin2(πu) and the sum of the other residues leads to the partial sum

N∑
n=−N

1

(u + n)2

This part was pretty straightforward and I won’t write it out. The harder
part is showing that the integral around the contour converges to zero as
N → ∞.

We will show that there is a constant M (independent of N) such that
| cot(πz)| ≤ M for all N and |z| = N + 1/2.

cot(πz) =
cos(πz)

sin(πz)
= i

eiπz + e−iπz

eiπz − e−iπz
= i

e2iπz + 1

e2iπz − 1

Let z = x + iy. Then this becomes

i
e2iπx−2πy + 1

e2iπx−2πy − 1

Since cot(πz) is an odd function, we need only consider z in the upper half
plane, ie., y ≥ 0 . If x is within 1/4 of N + 1/2 for some integer N , then
cos(2πx) ≤ 0. So the real part of e2iπx−2πy is ≤ 0. Hence |e2iπx−2πy − 1| ≥ 1.
The numerator is trivially bounded in modulus by 2. So | cot(πz)| ≤ 2 on
the vertical strips given by |Re(z)− (N +1/2)| < 1/4 for some N . The parts
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of the circle that do not lie in these strips are bounded away from the real
axis, i.e., there is a δ > 0 such that they lie in {z : |Im(z)| ≥ δ}. For y ≥ δ,

|i
e2iπx−2πy + 1

e2iπx−2πy − 1
| ≤

e−2πy + 1

1 − e−2πy
≤

e−2πδ + 1

1 − e−2πδ

With this bound on | cot(πz)|, showing the integral around the circle of radius
N + 1/2 goes to zero as N → ∞ is straightforward.

3. Suppose that f is analytic on some annulus centered at 0. So it has a
Laurent series of the form

f(z) =

∞∑
n=−∞

anzn

Let

R1 = inf{r1 : for some r2 > 0, f is analytic on r1 < |z| < r2}

R2 = sup{r2 : for some r1 > 0, f is analytic on r1 < |z| < r2}

Prove that

R1 = lim sup
n→∞

|a−n|
1/n

1

R2

= lim sup
n→∞

|an|
1/n

Solution: This problem was so poorly stated that everyone missed the
point of I was trying to get at. So I gave everyone full credit on the problem
and wrote comments on most papers. I will reassign this problem (hopefully
better stated) in the problem set after the midterm. Here is an attempt at a
better statement of the problem:

Suppose that f is analytic on the annulus {z : ρ1 < |z| < ρ2}. From what
we did in class we know that it has a Laurent series of the form

f(z) =
∞∑

n=−∞

anzn
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meaning that the series converges to f(z) on the annulus. Moreover the
convergence is absolute.

Define

R1 = lim sup
n→∞

|a−n|
1/n

1

R2

= lim sup
n→∞

|an|
1/n

(a) Prove that R1 ≤ ρ1 and that R2 ≥ ρ2.
(b) Prove that the Laurent series converges absolutely on {z : R1 < |z| < R2}
and uniformly on compact subsets of this set, and so defines an analytic
continuation of f to this annulus.
(c) Prove that if f has an analytic continuation to an annulus {z : r1 < |z| <
r2} with r1 ≤ R1 and r2 ≥ R2, then r1 = R1 and r2 = R2. In other words the
annulus in part (b) is the largest annulus (about 0) containing the original
annulus on which f has an analytic continuation.

4. Let f and g be analytic on an open set containing the closed disc |z| ≤ 1.
Suppose f has a simple zero at z = 0 and has no other zeroes in the closed
disc. Define for complex w,

fw(z) = f(z) + wg(z)

Prove that there is an ǫ > 0 such that for |w| < ǫ, fw has a unique zero zw

in the closed disc and the mapping w → zw is continuous.

Solution: Let M = sup |g(z)|, m = inf |f(z)| where the sup and inf
are over the unit circle. Since the circle is compact and both functions are
continuous, the sup and inf are attained and so M < ∞ and m > 0. Assume
M > 0. (Otherwise g vanishes on the unit circle and so must be the zero
function.) Define ǫ = m/M . Let w be such that |w| < ǫ. We apply Rouché’s
theorem to the functions f(z) and wg(z). We have |wg(z)| < ǫM = m and
|f(z)| ≥ m on the circle, so |wg(z)| < |f(z)| on the circle. By the theorem
f(z) and f(z) + wg(z) have the same number of zeros inside the circle. So
f(z) + wg(z) has exactly one zero, zw.

To prove zw is continuous in w, fix w with |w| < ǫ and let wn be a
sequence converging to w. Suppose zwn

does not converge to zw. Then there
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is an ǫ > 0 and a subsequence of zwn
whose distance to zw is always at least ǫ.

This subsequence is in the unit disc, a bounded set, so it has a subsequence
which converges to something, call it z′, in the closed unit disc. Note that z′

cannot be zw. Let uk be the corresponding subsequence of the subsequence of
wn. So zuk

converges to z′. Now wuk
converges to w, so fwu

k
(zuk

) converges
to fw(z′). But fwu

k
(zuk

) = 0 for all k, so z′ is a root of fw. By the bounds
in the first paragraph, fw is not zero on the boundary of the disc, so z′ is
in the open unit disc. But fw has only one root in this disc, and it is zw.
Contradiction.

5. Let f be analytic on the complex plane except for isolated singularites at
z1, z2, · · · , zm. Define the residue of f at ∞ to be the residue of −z−2f(1/z)
at z = 0. Let R = maxj |zj|.
(a) Express the residue at ∞ in terms of the coefficients of the Laurent series
of f in the region {z : R < |z|}.

Solution: Let

f(z) =

∞∑
n=−∞

anzn

be the Laurent series of f for |z| > R. Then for |z| < 1/R,

f(1/z) =

∞∑
n=−∞

anz−n

So

−z−2f(1/z) = −
∞∑

n=−∞

anz
−n−2

The residue of this is the coef of the 1/z term. This is when n = −1 and the
residue at ∞ is −a−1.
(b) What is the relation of the residue at ∞ to the integral

1

2πi

∫
γ

f(z)dz

where γ(t) = reit, 0 ≤ t ≤ 2π for r > R ?
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Solution: The Laurent series converges uniformly on the circle of radius r,
so we can integrate it term by term to get

1

2πi

∫
γ

f(z)dz = a−1

So this integral is minus the residue at ∞.

(c) Show that

Res(f,∞) = −
m∑

k=1

Res(f, zk)

Solution: The contour in part (b) encloses all the singularites with winding
number 1, so by the residue theorem the integral in part (b) is

∑m
k=1

Res(f, zk),
and the equation in (c) follows.

6. Let

f(z) =
cos z

z(1 + z2)

(a) Find the z5 term in the Laurent series of f in the annulus
{z : 0 < |z| < 1}.

Solution:

cos(z) = 1 −
z2

2!
+

z4

4!
− · · ·

1

1 + z2
= 1 −

1

z2
+

1

z4
−

1

z6
· · ·

So the power series of cos z/(1 + z2) about the origin is

(1 −
z2

2!
+

z4

4!
− · · ·)(1 −

1

z2
+

1

z4
−

1

z6
· · ·)

The z5 term in the Laurent series we want will be 1/z times the z6 term in this
power series which works out to be (−1− 1/2− 1/24− 1/720)z5 = −1111

720
z5.

(b) Find the z−5 term in the Laurent series of f in the annulus
{z : 1 < |z| < ∞}.
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Solution: If we take r > 1, the coefficient of z5 in the Laurent series is
given by

1

2πi

∫
|z|=r

z4f(z)dz =
1

2πi

∫
|z|=r

z3 cos(z)

1 + z2
dz

You can compute this integral by the residue theorem and find cos(i) =
cosh(1).

7. Let D = {z : |z| ≤ R}. Let f and g be analytic on an open set containing
D. Suppose that |f(z)| = |g(z)| when |z| = R, and that f and g never vanish
on D. Prove that there is a constant c with |c| = 1 such that f(z) = cg(z)
for |z| ≤ 1.

Solution: Let h(z) = f(z)/g(z). Since g does not vanish on D = {z : |z| <
R}, h is analytic on D. On the boundary of D we have |h(z)| = 1. So by the
maximum-modulus theorem we have |h(z)| ≤ 1 on D, i.e., |f(z)| ≤ |g(z)| on
D. The same argument with f and g interchanged shows |g(z)| ≤ |f(z)| on
D. So |g(z)| = |f(z)| on D. Thus the analytic function h attains it maximum
modulus at an interior point (in fact at every interior point) and so must be
a constant. So f(z) = cg(z) and |c| must be 1.
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