Math 520a - Homework 5

1. Is it possible to define a branch of the logarithm $f(z)$ such that for all positive integers $n, f(n)=\log (n)+2 \pi i n$? You should justify your answer, i.e, show it cannot be done or show how to do it.
2. Let

$$
f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

Let $U=\{z \in \mathbb{H}:|z|>1\}$. Show that f is a conformal map of U onto the upper half plane \mathbb{H}.
3. Book, page 250, problem 11 .
4. Let U be a simply connected region which is not empty and not the entire plane. Let $z_{0} \in U$.
(a) Prove there is a unique $r>0$ such that there is a conformal map f from U onto the disc with radius r centered at the origin satisfying $f\left(z_{0}\right)=0$, $f^{\prime}\left(z_{0}\right)=1$. The radius r is called the conformal radius of U (with respect to $\left.z_{0}\right)$. We will denote it by $r\left(U, z_{0}\right)$.
(b) Let U_{1} and U_{2} be simply connected regions which are not empty and not the entire plane. Suppose that $U_{1} \subset U_{2}$ and $z_{0} \in U_{1}$. Prove that $r\left(U_{1}, z_{0}\right) \leq r\left(U_{2}, z_{0}\right)$.
5. Suppose that f is analytic on the annulus $\left\{z: \rho_{1}<|z|<\rho_{2}\right\}$. From what we did in class we know that it has a Laurent series of the form

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

meaning that the series converges to $f(z)$ on the annulus. Moreover the convergence is absolute.

Define

$$
\begin{aligned}
R_{1} & =\limsup _{n \rightarrow \infty}\left|a_{-n}\right|^{1 / n} \\
\frac{1}{R_{2}} & =\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}
\end{aligned}
$$

(a) Prove that $R_{1} \leq \rho_{1}$ and that $R_{2} \geq \rho_{2}$.
(b) Prove that the Laurent series converges absolutely on $\left\{z: R_{1}<|z|<R_{2}\right\}$ and uniformly on compact subsets of this set, and so defines an analytic continuation of f to this annulus.
(c) Prove that if f has an analytic continuation to an annulus $\left\{z: r_{1}<|z|<\right.$ $\left.r_{2}\right\}$ with $r_{1} \leq R_{1}$ and $r_{2} \geq R_{2}$, then $r_{1}=R_{1}$ and $r_{2}=R_{2}$. In other words the annulus in part (b) is the largest annulus (about 0) containing the original annulus on which f has an analytic continuation.
6. Moibius transformations give homeomorphisms of the Riemann sphere. Find all Moibius transformations that corresponds to rotations of the sphere.
7. Problem 1 on page 108 of the book leads us through a proof of the famous Koebe $1 / 4$ theorem. (The book calls it the Koebe-Bierbach theorem.) Do at least parts (a) and (b).

