
Math 520a - Homework 5 - Selected solutions

1. Is it possible to define a branch of the logarithm f(z) such that for all
positive integers n, f(n) = log(n) + 2πin ? You should justify your answer,
i.e, show it cannot be done or show how to do it.

Solution: Yes, it is possible. Let ω be the spiral which in polar coordinates
is θ = (r + 1/2)/2π. It spirals counterclockwise and crosses the positive real
axis at n+1/2 for n = 0, 1, 2, 3, · · ·. Let g(z) be the branch of the log that is
given by integrating 1/w from 1 to z along any contour γ that does not cross
ω. Clearly g(1) = 0. By drawing pictures we see that if we take a contour
from 1 to n which does not cross ω and close it by going from n back to 1
along the real axis, then the closed countour has winding number n− 1. So

2πi(n− 1) =

∫

γ

dw

w
+

∫ 1

n

dw

w
= g(n) − log(n)

So g(n) = log(n) + 2πi(n− 1). Now let f(z) = g(z) + 2πi to get the branch
of the log called for in the problem.

2. Let

f(z) =
1

2
(z +

1

z
)

Let U = {z ∈ H : |z| > 1}. Show that f is a conformal map of U onto the
upper half plane H.

Solution: Clearly f is analytic everywhere but 0.

Im(f(x+ iy)) =
1

2

[

y +
−y

x2 + y2

]

=
y

2

(x2 + y2) − 1

x2 + y2

If x + iy ∈ U , then y > 0 and x2 + y2 > 1, so the above is positive, ie.,
f(x+ iy) ∈ H.

To show it is onto an injective, let w ∈ H. Then f(z) = w is a quadratic
equation for z with solutions z = w±

√
w2 − 1. Some algebra shows that for

w ∈ H, exactly one of these two solutions lies in U .

3. Book, page 250, problem 11.
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Solution: We assume f is not constant. By the maximum value principle
this implies |f(z)| < M on the circle |z| = R. Let g(z) = f(Rz)/M . Then g
maps D into D. Let

ψ(z) =
z − g(0)

1 − g(0)z

As we have seen before ψ is a Moibus transformation of D onto itself which
sends g(0) to 0. So ψ(g(z)) = ψ(f(Rz)/M) maps D into itself, sending 0 to 0.
By Schwarz’s lemma, |ψ(g(z))| ≤ |z| for all z ∈ D. So using g(0) = f(0)/M
and the past definitions,

f(Rz)
M

− f(0)
M

1 − f(0)f(Rz)
M2

≤ |z|

Letting Rz = w, and simplifying we have

f(w) − f(0)

M2 − f(0)f(w)
≤ |w|
MR

4. Let U be a simply connected region which is not empty and not the entire
plane. Let z0 ∈ U .
(a) Prove there is a unique r > 0 such that there is a conformal map f from
U onto the disc with radius r centered at the origin satisfying f(z0) = 0,
f ′(z0) = 1. The radius r is called the conformal radius of U (with respect to
z0). We will denote it by r(U, z0).
(b) Let U1 and U2 be simply connected regions which are not empty and
not the entire plane. Suppose that U1 ⊂ U2 and z0 ∈ U1. Prove that
r(U1, z0) ≤ r(U2, z0).

Solution: (a) By the Riemann mapping theorem there is a conformal
map F from U onto the unit disc with F (z0) = 0 and F ′(z0) > 0. We will
show r = 1/F ′(z0). The map f(z) = rF (z) maps U onto the disc of radius
r and f ′(z0) = rF ′(z0) = 1. Suppose g is a conformal map of U onto a
disc of radius r′ with g(z0) = 0 and g′(z0) = 1. Then G(z) = g(z)/r′ is
a conformal map of U onto the unit disc with G(z0) = 0 and G′(z0) > 0.
By the uniqueness part of the Riemann mapping theorem, G(z) = F (z). In
particular, G′(z0) = F ′(z0). Since g′(z0) = f ′(z0) = 1, this implies r = r′.
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(b) Let Fi be the unique conformal maps from Ui onto D with Fi(z0) = 0 and
F ′

i (z0) > 0. By part (a), ri = 1/F ′(z0). So we want to show F ′

1(z0) ≥ F ′

2(z0).
From the proof of the Riemann mapping theorem, F ′

1(z0) ≥ F ′(z0) for any
conformal map of U1 to a subset of D. If we restrict F2 to U1, then it is such
a conformal map and the bound follows.

6. Moibius transformations give homeomorphisms of the Riemann sphere.
Find all Moibius transformations that corresponds to rotations of the sphere.

Solution: Rotations about the z-axis by angle θ correspond to the Moibius

transformation f(z) = eiθz. We denote this rotation of the sphere by Rz
θ.

The Moibius transformation corresponds to the two by two matrix

Rz
θ ∼

(

eiθ/2 0
0 e−iθ/2

)

(Remember that the matrix should have determinant 1.)
Let Ry

φ be the rotation of the sphere about the axis parallel to the y-axis.
Let C be the great circle on the sphere that projects to the real axis. So
Ry

φ(C) = C. The points fixed by Ry
φ project to i and −i in the complex

plane. So Ry
φ corresponds to a Moibius transformation that maps R∞ to

itself and fixes ±i. The first condition implies it is of the form

f(z) =
az + b

cz + d

with a, b, c, d real. A little calculation shows that fixing i and −i implies
b = −c and a = d. The determinant of the corresponding two by two matrix
is ad− bc = a2 + b2. This must be 1, so we can write a and b as a = cos(ω),
b = − sin(ω) for some ω. (The − is for latter convience.) Take the image of
the north pole under the rotation, project it to the plane and compare this
with what the Moibius transformation does to ∞ and you find that ω = φ/2.
(Note that φ = 2π corresponds to the identity rotation, but the two by two
matrix is minus the identity. This is ok, since minus the two by two identity
corresponds to the identity Moibuis transformation.) So

Ry
φ ∼

(

cos(φ/2) − sin(φ/2)
sin(φ/2) cos(φ/2)

)
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Now take a general rotation R of the sphere about the axis L. We can
use a Rz to rotate L so that it hits the great circle C. Then we can use a Ry

to rotate it to the line through the north and south poles. It follows that R
is of the form

R = Rz
−θR

y
−φR

z
αR

y
φR

z
θ

for some θ, φ, α. Note that the two by two matrices corresponding to Rz and
to Ry are unitary. It follows that the two by two matrix corresponding to
R is unitary. So the Moibius transformations we get all correspond to two
by two unitary matrices. Since the two by two matrices have determinant
one, we have shown that the Mobius transformations map into SU(2) inside
SL(2,C). To show that we get all of SU(2) we need to show that the two
by two matrix correspond to R above gives all of SU(2). I have not checked
this. Note that a general matrix in SU(2) is of the form

(

a b
−b a

)

where a, b ∈ C and |a|2 + |b|2 = 1.
Recall that the homorphism of SL(2,C) to Moibius transformations has

kernel I,−I. SU(2) is the universal covering group of SO(3), the group of
rotations, and it is a two fold cover. So this all fits together nicely.
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