Math 520a - Homework 6

1. Let Ω be an open subset of the complex plane that is symmetric about the real axis and intersects the real axis. Let $\Omega^{+}=\{z \in \Omega: \operatorname{Im}(z)>0\}$. Let $I=\{z \in \Omega: \operatorname{Im}(z)=0\}$, the intersection of Ω with the real axis. Let f be analytic on Ω^{+}and continuous on $\Omega^{+} \cup I$. Suppose that $|f(z)|=1$ for $z \in I$. Prove that f has an analytic continuation to Ω.
2. Problem 2 on page 109 in the book.
3. Let $0<k<1$ and define

$$
f(z)=\int_{0}^{z} \frac{d w}{\left[\left(1-w^{2}\right)\left(1-k^{2} w^{2}\right)\right]^{1 / 2}}
$$

(a) The branch cut for the square root is "chosen so that the denominator is positive when w is real and $-1<w<1$." Give an explicit definition of the branch cut that does this.
(b) Find the image of \mathbb{H} under f and show that f is a conformal map between \mathbb{H} and this region. You can use all the things we have proved about SchwarzChristoffel maps, but pay attention to branch cuts. (This is an example in the book if you get stuck.)
4. Problem 22 on page 253 in the book. I would ignore the book's hint and instead use the corresponding result for the half plane and a Moibus transformation between \mathbb{H} and \mathbb{D}.
5. Problem 23 on page 253 in the book.
6. Let Ω be a bounded simply connected region whose boundary is a piecewise smooth curve. Let f be a continuous function on the boundary. Consider the Dirichlet problem

$$
\begin{array}{r}
\Delta u(z)=0, \quad z \in \Omega \\
u(z)=f(z), \quad z \in \partial \Omega
\end{array}
$$

Prove that the solution is unique. Hint: mean value property.
7. Problem 8 on page 249 in the book.
8. (a) Prove that every meromorphic function on \mathbb{C} is the quotient of two entire functions.
(b) Let a_{n} and b_{n} be sequences of complex numbers that do not have a limit point. We assume $a_{n} \neq b_{m}$ for all n, m. There can be repetitions within the sequences, but a given complex number only occurs a finite number of times in each sequence. Prove there is a meromorphic function with zeroes at the a_{n} and nowhere else and poles at the b_{n} and nowhere else. Furthermore, the order of the zero at a is the number of times a appears in a_{n} and the order of the pole at b is the number of times b appears in b_{n}.

