Math 520a - Homework 6 - selected solutions

1. Let € be an open subset of the complex plane that is symmetric about
the real axis and intersects the real axis. Let Qt = {z € Q : Im(z) > 0}.
Let I = {z € Q: Im(z) = 0}, the intersection of {2 with the real axis. Let
f be analytic on Q1 and continuous on Q* U I. Suppose that |f(z)| = 1 for
z € I. Prove that f has an analytic continuation to €.

Solution: The problem is not true as stated. We need to also assume f does
not vanish on Q*. We have already seen that f(Z) is analytic on the relection
of Q" about the real axis,which we denote by Q~. If f never vanishes on Q%
then ¢g(z) = 1/f(Z) is analytic Q. Note that f is continuous on O U T and
g is continuous on Q- U I. On I, |f(z)] = 1 implies f(z) = g(z). By the
same argument used to prove the Schwarz reflection principle, g provides the

analytic continuation.

2. Problem 2 on page 109 in the book.

Solution: Define
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so ¢ maps the unit disc to the unit disc and sends zy to 0. Consider v(z) =
u(¢(z)). Tt is a harmonic function on the disc, so by the mean value property,

v(0) = %/o Fv(ew)dg

We have v(0) = u(¢(0)) = u(zp). So
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Do a change of variables in the integral given by
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Some calculation then yields the result.

3. Let 0 < k£ < 1 and define
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(a) The branch cut for the square root is “chosen so that the denominator is
positive when w is real and —1 < w < 1.” Give an explicit definition of the
branch cut that does this.

(b) Find the image of H under f and show that f is a conformal map between
H and this region. You can use all the things we have proved about Schwarz-
Christoffel maps, but pay attention to branch cuts. (This is an example in
the book if you get stuck.)

Solution: The problem is worked out in examples in the book.
4. Problem 22 on page 253 in the book. I would ignore the book’s hint

and instead use the corresponding result for the half plane and a Moibus
transformation between H and D.

Solution: Let
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so ¢ maps H to D. So F' o ¢ is a conformal map of H to P. Thus there are
real numbers Aq, As,--- A, and complex constants ¢y, co such that
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Do a change of variables ( = ¢(w) and after some algebra you get the formula
in the book.

5. Problem 23 on page 253 in the book.

Solution: I don’t know how to do this one.

6. Let 2 be a bounded simply connected region whose boundary is a piece-
wise smooth curve. Let f be a continuous function on the boundary. Consider
the Dirichlet problem

Au(z) =0, z€Q
u(z) = f(z), ze€ 00

Prove that the solution is unique. Hint: mean value property.



Solution: The hint should have said maximum value property not mean
value property. Let u; and us be two solutions. Then v = u; — ug is a
harmonic function that vanishes on the boundary. By the maximum value
property u attains its max on the boundary. So that max is 0. Similarly the
min is zero. So u = 0, i.e., u; = uo.

7. Problem 8 on page 249 in the book.

Solution:

8. (a) Prove that every meromorphic function on C is the quotient of two
entire functions.

Solution: Let f(z) be meromorphic. Let a, be its poles, listed according
to their order. Weiestrass’s theorem says there is an entire function g whose
zeroes (listed according to multiplicity) are exactly the a,. Now look at
f(2)g(2). It is analytic except possible at the a,. Let a be in this list and let
m be the number of times it appears in the list Then there is a neighborhood
of a in which we have f(z) = F(z)/(z — a)™ where F is analytic near a, and
g(z) = G(2)(z — a)™ where G is analytic near a. So fg has a removable
singularity at a. Thus h(z) = f(2)g(2) is an entire funtion. So f = h/g.

(b) Let a,, and b, be sequences of complex numbers that do not have a limit
point. We assume a,, # b,, for all n,m. There can be repetitions within the
sequences, but a given complex number only occurs a finite number of times
in each sequence. Prove there is a meromorphic function with zeroes at the
a,, and nowhere else and poles at the b, and nowhere else. Furthermore, the
order of the zero at a is the number of times a appears in a,, and the order
of the pole at b is the number of times b appears in b,,.

Solution: Let f(z) be an entire functions with zeros at {a,} where the
multiplicity of the zero is the number of times the point appear in the list.
Similarly, let g(z) be entire with zeroes at b,. Now consider f(z)/g(z). The
condition that a, # b,,, means that at a zero of f, g is not zero. So the
quotient has zeroes at the zeroes of f with the same multiplicity. Whereever
g has a pole, f is not zero, so the quotient has a pole where g has a zero and
the order of the pole is the order of the zero.



