Math 520a-Homework 6 - selected solutions

1. Let Ω be an open subset of the complex plane that is symmetric about the real axis and intersects the real axis. Let $\Omega^{+}=\{z \in \Omega: \operatorname{Im}(z)>0\}$. Let $I=\{z \in \Omega: \operatorname{Im}(z)=0\}$, the intersection of Ω with the real axis. Let f be analytic on Ω^{+}and continuous on $\Omega^{+} \cup I$. Suppose that $|f(z)|=1$ for $z \in I$. Prove that f has an analytic continuation to Ω.
Solution: The problem is not true as stated. We need to also assume f does not vanish on Ω^{+}. We have already seen that $\overline{f(\bar{z})}$ is analytic on the relection of Ω^{+}about the real axis, which we denote by Ω^{-}. If f never vanishes on Ω^{+}, then $g(z)=1 / \overline{f(\bar{z})}$ is analytic Ω^{-}. Note that f is continuous on $\Omega^{+} \cup I$ and g is continuous on $\Omega^{-} \cup I$. On $I,|f(z)|=1$ implies $f(z)=g(z)$. By the same argument used to prove the Schwarz reflection principle, g provides the analytic continuation.
2. Problem 2 on page 109 in the book.

Solution: Define

$$
\phi(z)=\frac{z_{0}-z}{1-\overline{z_{0}} z}
$$

so ϕ maps the unit disc to the unit disc and sends z_{0} to 0 . Consider $v(z)=$ $u(\phi(z))$. It is a harmonic function on the disc, so by the mean value property,

$$
v(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(e^{i \theta}\right) d \theta
$$

We have $v(0)=u(\phi(0))=u\left(z_{0}\right)$. So

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(\phi\left(e^{i \theta}\right)\right) d \theta
$$

Do a change of variables in the integral given by

$$
e^{i \alpha}=\frac{z_{0}-e^{i \theta}}{1-\overline{z_{0}} e^{i \theta}}
$$

Some calculation then yields the result.
3. Let $0<k<1$ and define

$$
f(z)=\int_{0}^{z} \frac{d w}{\left[\left(1-w^{2}\right)\left(1-k^{2} w^{2}\right)\right]^{1 / 2}}
$$

(a) The branch cut for the square root is "chosen so that the denominator is positive when w is real and $-1<w<1$." Give an explicit definition of the branch cut that does this.
(b) Find the image of \mathbb{H} under f and show that f is a conformal map between \mathbb{H} and this region. You can use all the things we have proved about SchwarzChristoffel maps, but pay attention to branch cuts. (This is an example in the book if you get stuck.)

Solution: The problem is worked out in examples in the book.
4. Problem 22 on page 253 in the book. I would ignore the book's hint and instead use the corresponding result for the half plane and a Moibus transformation between \mathbb{H} and \mathbb{D}.

Solution: Let

$$
\phi(z)=\frac{i-z}{i+z}
$$

so ϕ maps \mathbb{H} to \mathbb{D}. So $F \circ \phi$ is a conformal map of \mathbb{H} to P. Thus there are real numbers $A_{1}, A_{2}, \cdots A_{n}$ and complex constants c_{1}, c_{2} such that

$$
F \circ \phi(z)=c_{1} \int_{0}^{z} \frac{d w}{\left(w-A_{1}\right)^{\beta_{1}} \cdots\left(w-A_{n}\right)^{\beta_{n}}}+c_{2}
$$

Do a change of variables $\zeta=\phi(w)$ and after some algebra you get the formula in the book.
5. Problem 23 on page 253 in the book.

Solution: I don't know how to do this one.
6. Let Ω be a bounded simply connected region whose boundary is a piecewise smooth curve. Let f be a continuous function on the boundary. Consider the Dirichlet problem

$$
\begin{array}{r}
\Delta u(z)=0, \quad z \in \Omega \\
u(z)=f(z), \quad z \in \partial \Omega
\end{array}
$$

Prove that the solution is unique. Hint: mean value property.

Solution: The hint should have said maximum value property not mean value property. Let u_{1} and u_{2} be two solutions. Then $u=u_{1}-u_{2}$ is a harmonic function that vanishes on the boundary. By the maximum value property u attains its max on the boundary. So that max is 0 . Similarly the min is zero. So $u=0$, i.e., $u_{1}=u_{2}$.
7. Problem 8 on page 249 in the book.

Solution:

8. (a) Prove that every meromorphic function on \mathbb{C} is the quotient of two entire functions.

Solution: Let $f(z)$ be meromorphic. Let a_{n} be its poles, listed according to their order. Weiestrass's theorem says there is an entire function g whose zeroes (listed according to multiplicity) are exactly the a_{n}. Now look at $f(z) g(z)$. It is analytic except possible at the a_{n}. Let a be in this list and let m be the number of times it appears in the list Then there is a neighborhood of a in which we have $f(z)=F(z) /(z-a)^{m}$ where F is analytic near a, and $g(z)=G(z)(z-a)^{m}$ where G is analytic near a. So $f g$ has a removable singularity at a. Thus $h(z)=f(z) g(z)$ is an entire funtion. So $f=h / g$.
(b) Let a_{n} and b_{n} be sequences of complex numbers that do not have a limit point. We assume $a_{n} \neq b_{m}$ for all n, m. There can be repetitions within the sequences, but a given complex number only occurs a finite number of times in each sequence. Prove there is a meromorphic function with zeroes at the a_{n} and nowhere else and poles at the b_{n} and nowhere else. Furthermore, the order of the zero at a is the number of times a appears in a_{n} and the order of the pole at b is the number of times b appears in b_{n}.
Solution: Let $f(z)$ be an entire functions with zeros at $\left\{a_{n}\right\}$ where the multiplicity of the zero is the number of times the point appear in the list. Similarly, let $g(z)$ be entire with zeroes at b_{n}. Now consider $f(z) / g(z)$. The condition that $a_{n} \neq b_{m}$, means that at a zero of f, g is not zero. So the quotient has zeroes at the zeroes of f with the same multiplicity. Whereever g has a pole, f is not zero, so the quotient has a pole where g has a zero and the order of the pole is the order of the zero.

