
Math 520a - Homework 6 - selected solutions

1. Let Ω be an open subset of the complex plane that is symmetric about
the real axis and intersects the real axis. Let Ω+ = {z ∈ Ω : Im(z) > 0}.
Let I = {z ∈ Ω : Im(z) = 0}, the intersection of Ω with the real axis. Let
f be analytic on Ω+ and continuous on Ω+ ∪ I. Suppose that |f(z)| = 1 for
z ∈ I. Prove that f has an analytic continuation to Ω.

Solution: The problem is not true as stated. We need to also assume f does
not vanish on Ω+. We have already seen that f(z) is analytic on the relection
of Ω+ about the real axis,which we denote by Ω−. If f never vanishes on Ω+,
then g(z) = 1/f(z) is analytic Ω−. Note that f is continuous on Ω+ ∪ I and
g is continuous on Ω− ∪ I. On I, |f(z)| = 1 implies f(z) = g(z). By the
same argument used to prove the Schwarz reflection principle, g provides the
analytic continuation.

2. Problem 2 on page 109 in the book.

Solution: Define

φ(z) =
z0 − z

1 − z0z

so φ maps the unit disc to the unit disc and sends z0 to 0. Consider v(z) =
u(φ(z)). It is a harmonic function on the disc, so by the mean value property,

v(0) =
1

2π

∫
2π

0

v(eiθ) dθ

We have v(0) = u(φ(0)) = u(z0). So

u(z0) =
1

2π

∫
2π

0

u(φ(eiθ)) dθ

Do a change of variables in the integral given by

eiα =
z0 − eiθ

1 − z0eiθ

Some calculation then yields the result.

3. Let 0 < k < 1 and define

f(z) =

∫ z

0

dw

[(1 − w2)(1 − k2w2)]1/2
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(a) The branch cut for the square root is “chosen so that the denominator is
positive when w is real and −1 < w < 1.” Give an explicit definition of the
branch cut that does this.
(b) Find the image of H under f and show that f is a conformal map between
H and this region. You can use all the things we have proved about Schwarz-
Christoffel maps, but pay attention to branch cuts. (This is an example in
the book if you get stuck.)

Solution: The problem is worked out in examples in the book.

4. Problem 22 on page 253 in the book. I would ignore the book’s hint
and instead use the corresponding result for the half plane and a Moibus
transformation between H and D.

Solution: Let

φ(z) =
i − z

i + z

so φ maps H to D. So F ◦ φ is a conformal map of H to P . Thus there are
real numbers A1, A2, · · ·An and complex constants c1, c2 such that

F ◦ φ(z) = c1

∫ z

0

dw

(w − A1)β1 · · · (w − An)βn

+ c2

Do a change of variables ζ = φ(w) and after some algebra you get the formula
in the book.

5. Problem 23 on page 253 in the book.

Solution: I don’t know how to do this one.

6. Let Ω be a bounded simply connected region whose boundary is a piece-
wise smooth curve. Let f be a continuous function on the boundary. Consider
the Dirichlet problem

∆u(z) = 0, z ∈ Ω

u(z) = f(z), z ∈ ∂Ω

Prove that the solution is unique. Hint: mean value property.
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Solution: The hint should have said maximum value property not mean
value property. Let u1 and u2 be two solutions. Then u = u1 − u2 is a
harmonic function that vanishes on the boundary. By the maximum value
property u attains its max on the boundary. So that max is 0. Similarly the
min is zero. So u = 0, i.e., u1 = u2.

7. Problem 8 on page 249 in the book.

Solution:

8. (a) Prove that every meromorphic function on C is the quotient of two
entire functions.

Solution: Let f(z) be meromorphic. Let an be its poles, listed according
to their order. Weiestrass’s theorem says there is an entire function g whose
zeroes (listed according to multiplicity) are exactly the an. Now look at
f(z)g(z). It is analytic except possible at the an. Let a be in this list and let
m be the number of times it appears in the list Then there is a neighborhood
of a in which we have f(z) = F (z)/(z − a)m where F is analytic near a, and
g(z) = G(z)(z − a)m where G is analytic near a. So fg has a removable
singularity at a. Thus h(z) = f(z)g(z) is an entire funtion. So f = h/g.

(b) Let an and bn be sequences of complex numbers that do not have a limit
point. We assume an 6= bm for all n, m. There can be repetitions within the
sequences, but a given complex number only occurs a finite number of times
in each sequence. Prove there is a meromorphic function with zeroes at the
an and nowhere else and poles at the bn and nowhere else. Furthermore, the
order of the zero at a is the number of times a appears in an and the order
of the pole at b is the number of times b appears in bn.

Solution: Let f(z) be an entire functions with zeros at {an} where the
multiplicity of the zero is the number of times the point appear in the list.
Similarly, let g(z) be entire with zeroes at bn. Now consider f(z)/g(z). The
condition that an 6= bm, means that at a zero of f , g is not zero. So the
quotient has zeroes at the zeroes of f with the same multiplicity. Whereever
g has a pole, f is not zero, so the quotient has a pole where g has a zero and
the order of the pole is the order of the zero.

3


