
February 17, 2010

1 Riemann surfaces

1.1 Definitions and examples

Let X be a topological space. We want it to look locally like C. So we make
the following definition.

Definition 1. A complex chart on X is a homeomorphism φ : U → V
where U is an open set in X and V is an open set in C. We say the chart is
centered at p ∈ U if φ(p) = 0.

We think of the chart as providing a complex coordinate z = φ(p) locally
on X. Charts are also called local coordinates and sometimes uniformizing
variables. When two charts have overlapping domains, these charts need to
be related.

Definition 2. Let φ1 : U1 → V1 and φ2 : U2 → V2 be two charts. We say
they are compatible if either U1 and U2 are disjoint or φ2◦φ

−1
1 is analytic

on φ1(U1 ∩ U2).

Note that if φ2◦φ
−1
1 is analytic on φ1(U1 ∩ U2), then φ1◦φ

−1
2 is analytic

on φ2(U1 ∩U2). So the definition is symmetric in the two charts. We refer to
the functions such as φ2◦φ

−1
1 and φ1◦φ

−1
2 as transition functions.

Lemma 1. The derviative of a transition function never vanishes.

Proof: The derivative of an injective function never vanishes.

Definition 3. A complex atlas A on X is a collection A = {φα : Uα → Vα}
of compatible charts whose domains cover X, i.e., X = ∪αUα.

There will be many atlases on a given Riemann surface.

Definition 4. Two complex atlases A and B are equivalent if every chart
in A is compatible with every chart in B.

When two atlases are compatible we can combine them to get another
atlas which contains them both. A Zorn’s lemma argument shows that every
atlas is contained in a unique maximal atlas. Furthermore, two atlases are
compatible if and only if they are subcollections of the same maximal atlas.
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Definition 5. A complex structure on X is a maximal atlas on X. Equiv-
alently it is an equivalence class of complex atlases on X.

————————————————————————–
End Jan 20

————————————————————————–
Finally we come to our main definition.

Definition 6. A Riemann surface is a connected second countable Haus-
dorff topological space with a complex structure.

Recall that Hausdorff means ... and second countable means that there is
a countable basis for the topology. Note that if X is a subset of some Rn and
its topological is the subspace topology, then it is automatically Hausdorff
and second countable.

We now consider examples.

1. The complex plane: X = C. There is a trivial chart: U = X, V = C

with φ(z) = z. There are of course many other charts. (Give some.)
Any connected open subset of C is a Riemann surface. Recall that all

simply connected domains that are not all of C are conformally equivalent.
We will see that they are also “equivalent” (yet to be defined) Riemann
surfaces. We focus on one of them.

2. The upper half plane X = H. Again, there is a single trivial chart that
covers all of X.

3. The Riemann sphere: Ĉ. This is the first example that cannot be
covered by a single chart. Let

S2 = {(x, y, w) ∈ R
3 : x2 + y2 + w2 = 1} (1)

be the unit sphere in R3. We give it the topology it it inherits as subspace
of R3. Let φ1 : S2 \ {(0, 0, 1)} → C be defined by

φ1(x, y, w) =
x

1 − w
+ i

y

1 − w
(2)

and φ2 : S2 \ {(0, 0,−1)} → C be defined by

φ2(x, y, w) =
x

1 + w
− i

y

1 + w
(3)

These maps are just stereographic projections with respect to the north and
south poles. You should check this. Note that I am using a slightly different
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definition of stereographic projection from last semester. One of the home-
work problems will be to compute φ2◦φ

−1
1 and check that it is holomorphic.

4. Tori: Fix two complex numbers ω1, ω2 which are linearly independent
over R. Define the lattice

L = {m1ω1 +m2ω2 : m1, m2 ∈ Z} (4)

Then define X = C/L and let π : C → X be the projection map. We give
X the quotient space topology, i.e., U ⊂ X is open iff π−1(U) is open in C.
The makes X a connected, compact topological space. Next we define some
charts. Pick ǫ > 0 small enough that |ω| > 2ǫ for all nonzero ω ∈ L. Now
let z ∈ C and consider the disc Bǫ(z). The choice of ǫ insures that no two
points in Bǫ(z) differ by a nonzero lattice point. So π restricted to the disc
is 1-1 and so defines a homeomorphism between Bǫ(z) and π(Bǫ(z)). Letting
z range over C gives our family of charts. Clearly the π(Bǫ(z)) cover X.

We need to show these charts are compatible. Let z1, z2 ∈ C and let
φ1, φ2 be the charts that map π(Bǫ(zi)) onto Bǫ(zi). Suppose that π(Bǫ(z1))
and π(Bǫ(z2)) overlap. Let T (z) = φ2(φ

−1
1 (z)). We have π(T (z)) = π(z) on

the overlap. So T (z) and z must differ by a lattice element: T (z) = z + ω.
Since T (z) − z is continuous and the lattice is discrete and the overlap is
connected, ω must be same for all z in the overlap. So T (z) is just z + c for
a constant c and so is analytic.

5. The complex projective line CP1. For a nonzero zero vector (z, w) ∈
C

2 we let [z : w] denote the span of (z, w), i.e., the set of (λz, λw) where
λ ranges over nonzero complex numbers. CP1 is the set of [z : w]. Let
U0 = {[z : w] : z 6= 0}, and on this set define φ0([z : w]) = w/z. Similary
U1 = {[z : w] : w 6= 0}, and φ1([z : w]) = z/w. We leave it to the homework
to check that these two charts are comaptible.

We now look at maps between Riemann surfaces.

Definition 7. Let M and N be Riemann surfaces and f : M → N a con-
tinuous map between them. We say f is holomorphic or analytic if for every
chart {U, φ} on M and every chart {V, ψ} on N with U ∩ f−1(V ) 6= ∅, the
function ψ◦f◦φ−1 is holomorphic on the open subset of C where it is defined.
(Note that this is map from an open subset of C into C, so it makes sense
to say it is holomorphic.) The map f is said to be conformal if it is holo-
morphic and a bijection. In this case the inverse is also holomorphic. When
two Riemann surfaces have a conformal map between them, we say they are
isomorphic (as Riemann surfaces).
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If N is just C, then we call f a holomorphic function. If N is Ĉ and
f is not identically ∞, then we call f a meromorphic function. We denote
the C-algebra of holomophic functions on M by H(M), and the C-algebra of
meromorphic functions on M by K(M).

Proposition 1. A non-constant holomorphic map is an open map.

Proof. Homework.

Proposition 2. Let f be an analytic map between Riemann surfaces, f :
M → N . Let q ∈ N and suppose there exist a sequence pn ∈ M which
converges to some p ∈M and for which f(pn) = q. Then f is constant.

Proof. Homework.

Theorem 1. Let M be a compact Riemann surface and N a Riemann sur-
face. Let f : M → N be a holomorphic mapping. Then f is either constant
or surjective. In particular the only holomorphic functions on a compact
Riemann surfaces are the constants.

Proof. Suppose f is not constant. Than it is an open map. So f(M) is open
being the image of the open set M . But f(M) is also the image of a compact
set under a continuous function, so f(M) is compact. In a Hausdorff space
compact implies closed. Thus f(M) is both open and closed. Since N is
connected, f(M) must be all of N .

Let f : M → N be a holomorphic map between two Riemann surfaces.
Fix a point po ∈M . Let φ be a chart for M centered at p0 and ψ a chart for
N centered by f(p0). Then ψ◦f◦φ−1(z) is analytic in a neighbor of z = 0
and vanishes at z = 0. Let n be the order of the zero. Then we can write
this function as znh(z) where h does not vanish in a neighborhood of 0.
Furthermore, we can find an analytic function g(z) such that h(z) = g(z)n

in a neighborhood of zero. So ψ◦f◦φ−1(z) = [zg(z)]n.
We will now show that we can change charts so that this function just

becomes zn. Let φ̃(p) = φ(p)g(φ(p)). This is a chart in some neighborhood
of p. We have φ̃◦φ−1(z) = zg(z), so ψ◦f◦φ−1(z) = [φ̃◦φ(z)]n. which leads to
ψ◦f◦φ̃−1(z) = zn.

————————————————————————–
End Jan 22

————————————————————————–

4



Definition 8. We say that f has multiplicity n at p0 and that n is the
ramification number of f at p0. The branch number of f at p0 is
bf (p0) = n− 1.

An analytic function on a domain in C has a zero of order greater than
one if and only its derivative vanishes at the zero. Since zeros of analytic
functions are isolated, it follows that the the points with ramification number
greater than 1 are isolated. IfM is compact this implies there are only finitely
many of them. The following proposition says that the number of times a
point in N is hit is the same for all points in N .

Proposition 3. Let f : M → N be a non constant holomophic map between
two compact Riemann surfaces. Then there is an integer m such that every
q ∈ N is assumed exactly m times (counted according to multiplicty) by f ,
i.e.,

∑

p∈f−1(q)

(bf (p) + 1) = m, ∀q ∈ N (5)

Definition 9. We call m the degree of f and write it as m = degf . We also
say f is an m-sheeted covering of N by M .

Proof. Define

Nk = {q ∈ N :
∑

p∈f−1(q)

(bf (p) + 1) ≥ k} (6)

Obviously, Nk+1 ⊂ Nk. We will show that each Nk is either empty or all of
N . Then m is the largest k for which Nk is all of N . Since N is connected,
to show Nk is empty or N it suffices to show it is both open and closed.

Nk is open: Let q0 ∈ Nk. Consider a p0 ∈ f−1(q0). We can find charts at
p0 and q0 so that f is just zn where n is the ramification number at p0. So
for q near q0 there are n points near p0 that get mapped to q. Summing over
p0 ∈ f−1(q0), we see

∑

p∈f−1(q)

(bf (p) + 1) ≥
∑

p0∈f−1(q0)

(bf (p0) + 1) ≥ k (7)

for q near q0, i.e., there is a neighborhood of q0 contained in Nk.
Nk is closed: Let qn ∈ Nk with qn → q. We can assume the qn are distinct.

There are only a finite number of points with ramification number greater
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than 1, so we can assume that all the qn have ramification number 1. So
qn ∈ Nk implies there are k distinct points that get mapped to qn. Label
them p1

n, · · · , p
k
n. Since M is compact, a diagonalization argument shows

there is a subsequence nj of n such that for each l, pl
nj

converges. Let pl be

its limit. We have f(pl) = q. If the pl are all distinct, this shows q ∈ Nk. If
a group of m of the pl are the same, then by working in coordinates we can
show the ramification number of that point is m. See proposition below.

Proposition 4. Let f be analytic in a neighborhood of 0. Let wn ∈ C

with wn → 0. For each n, let z1
n, · · · , z

m
n be distinct complex numbers in the

domain of f such that f(zj
n) = wn for j = 1, · · · , m. Suppose also that for

j = 1, · · · , m, limn→∞ zj
n = 0. Then z is a zero of f with multiplicity at least

m.

Corollary 1. A meromorphic function on compact Riemann surface has the
same number of zeroes and poles.

1.2 Topology of Riemann surfaces

One nice consequence of the existence of a meromorphic function is an easy
proof of the existence of a triangulation for compact surfaces.

Definition 10. Let S be a compact surface. A triangulation is a finite num-
ber of closed sets T1, T2, · · · , Tn in S and homeomorphisms φi of Ti to R2

such that φi(Ti) is a closed triangle in R2. For i 6= j, the triangles φi(Ti)
and φj(Tj) must either be disjoint, have single vertex in common or share
one edge. (The edge of one triangle cannot be a proper subset of the edge of
another triangle.)

A compact surface has a triangulation, but the proof is not trivial. For
a Riemann surface M we can prove it as follows. Let f be a meromorphic
function onM , i.e., a holomorphic function onto Ĉ. Construct a triangulation
T1, · · · , Tn of Ĉ such that the images of the ramified points in M under f are
at vertices in triangulation and such that on each component of f−1(int Ti)is
injective.

Riemann surfaces are always orientable, so in the following review we only
consider orientable, triangulable compact surfaces M .
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1.2.1 Homotopy

Let P,Q ∈ M . Let ci : [0, 1] → M be curves from P to Q for i = 1, 2.
There are homotopic if there is continuous h : [0, 1] × [0, 1] → M such that
h(·, 0) is c1, h(·, 1) is c2, and for each s, h(s, ·) is a curve from P to Q. Now
fix a P ∈ M . We consider curves that start and end at P . We define two
such curves to be equivalent if they are homotopic. It is not hard to check it
an equivalent relation. The equivalence classes are the elements of the first
homotopy group π1(M). The product of two curves c1 and c2 is the curve
we get by first traversing c1 and then c2. The inverse of a curve is the same
curve traversed in the opposite direction. The identity is the curve that is
just the single point P . Of course, one has to check that these definitions
are well defined for the equivalence classes. Since M is connected (and so
path-wise connected), it is not hard to show that the homotopy group based
at P is isomophic to that based at another point in M . This common group
is π1(M).

Examples

1. π1(S
1) = Z

2. π1(S
2) = π1(Ĉ) = {0}

3. π1(S
1 × S1) = Z × Z

1.3 Differential forms

We assume that the reader has seen the theory of integration on differentiable
manifolds. A Riemann surface is a two dimensional real manifold. So all that
theory applies here. Throughout this section M is a Riemann surface. We
will use z to denote a complex chart. This is a complex valued function on
an open set in M , so we can write it as z = x + iy where x and y are real
values functions on the open set in M .

Definition 11. A 0-form is a continuous function on M .

Definition 12. A 1-form ω is an ordered assignment of continuous complex
valued functions f and g to each complex chart on M (f and g are defined
on the domain of the chart). We write ω = fdx + gdy. The assignment
must “transform correctly under coordinate changes.” This means that if
z̃ = x̃+ iỹ is another complex chart that overlaps z and ω = f̃dx̃+ g̃dỹ then

(

f̃(z̃)
g̃(z̃)

)

=

( ∂x
∂x̃

∂y

∂x̃
∂x
∂ỹ

∂y

∂ỹ

) (

f(z(z̃))
g(z(z̃))

)

(8)
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Definition 13. A 2-form ω is an assignment of a continuous complex valued
functions f to each complex chart on M We write ω = fdx ∧ dy. The as-
signment must “transform correctly under coordinate changes.” This means
that if z̃ = x̃+ iỹ is another complex chart that overlaps z and ω = f̃dx̃∧dỹ,
then

f̃(z̃) =
∂(x, y)

∂(x̃, ỹ)
f(z(z̃))

where ∂(x,y)
∂(x̃,ỹ)

is the determinant of the two by two Jacobian that appeared in
the previous def.

Recall how exterior multiplication (wedge product) of forms works: dx∧
dx = dy∧dy = 0 and dx∧dy = −dy∧dx. In general you can take the wedge
product to a k-form and an l-form to get a k + l form. But since we are on
a two dimensional manifold, we will only see wedge products of two 1-forms.

Next we recall integration. A 1-form can be integrated along a curve in
the manifold. If the curve lies in a single chart, we let γ : [a, b] → M be the
curve. Let z be the chart, so z(γ(t)) are the coordinates of the curve. Then
the integral is given by

∫

γ

ω =

∫ b

a

[

f(z(γ(t)))
dx

dt
+ g(z(γ(t)))

dy

dt

]

dt (9)

The transition formula for change of coords for 1-forms implies this is inde-
pendent of the choice of chart. If the curve lies in more than one chart, we
break it up into pieces each of which lies in a single chart.

We can integrate a two form Ω over subsets of the Riemann surface. Let
D be a subset and suppose it is contained in a single chart {z, U}. Then for
the two form Ω = f(x, y)dx ∧ dy,

∫ ∫

D

Ω =

∫ ∫

z(U)

f(x, y)dxdy (10)

For a subset that is not contained in a single chart, write it as a union of
subsets that are. (partitions of unity).

Curves are 1-chains and surfaces are 2-chains. 0-chains are sets of points.
The integral of a 0-form (a function f) over a 0-chain is just the sum of the
values of the function at the points.
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The d operator: For a differentiable function f we define a 1-form by

df =
∂f

∂x
dx+

∂f

∂y
dy (11)

where z = x+ iy is a complex chart. For a 1-form ω = fdx+ gdy we define

dω = df ∧ dx+ dg ∧ dy =

[

∂g

∂x
−
∂f

∂y

]

dx ∧ dy (12)

Since we are on a two dimensional manifold, for a 2-form Ω, dΩ = 0.
In general, Stoke’s theorem says that for a k form ω and a k + 1 chain c,

∫

c

dω =

∫

∂c

ω (13)

In our setting, k can only be 0 or 1. The case of k = 0 is just the fundamental
theorem of calc. In the case k = 1, the left side is a surface integral and the
right side is an integral along the curve that bounds the surface.

Let f be differentiable on the Riemann surface. Given coordinates z =
x + iy, we can think of f as a complex valued function of (x, y). We let fx

and fy denote the partial derivatives with respect to x and y.

Definition 14. For a C1 function f on the Riemann surface and coordinates
z = x+ iy,

fz =
1

2
(fx − ify)

fz =
1

2
(fx + ify)

dz = dx+ idy, dz = dx− idy

∂f = fzdz, ∂f = fzdz,

For an analytic function, f ′ = fx = −ify , so fz = f ′ and the CR equations
are equivalent to fz = 0.

Lemma 2. ∂f and ∂f are 1-forms.

d = ∂ + ∂

∂2 = ∂
2

= ∂∂ = ∂∂ = 0

dz ∧ dz̃ = −2idx ∧ dy
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We can write a 1-form as u(z)dz+v(z)dz̃ where for every complex chart, u
and v are complex valued functions. And we can write a 2-form as g(z)dz∧dz̃
for a complex valued funciton g(z). So far we have only used the complex no-
tation to rewrite some things. We have not really used the complex structure.
Now we will.

Definition 15. Let ω be a 1-form. Given a chart z = x + iy and ω =
fdx+ gdy, we define a new 1-form, the conjugate of ω, by

∗ω = −gdx+ fdy

Note that ∗ ∗ ω = −ω.

Proposition 5. The above definition is well defined and ∗ω is a 1-form,
i.e., it transforms correctly under coordinate changes. If ω = udz+vdz, then
∗ω = −iudz + ivdz

Proof. The proof of the first sentence is a homework problem. The second
sentence is a trivial calculation.

Definition 16. Let ω be a 1-form on M . It is exact if there is a C1 function
f on M with ω = df . It is closed if it is C1 and dω = 0. ω is co-exact if
∗ω is exact and co-closed if ∗ω is closed.

Every exact form is closed and every co-exact form is co-exact. The
converses are only true locally unless M is simply connected in which case
they are true globally.

Definition 17. Let f be a C2 function on the Riemann surface M . The
Laplacian of f is a two form defined by

∆f = (fxx + fyy)dx ∧ dy

We say f is harmonic if ∆f = 0. This is a local property. A 1-form is
harmonic if it is locally given by df where f is a harmonic function (locally).

Of course we should check that this is independent of the choice of coor-
dinates. This is part of a homework problem.

Lemma 3. Let f be C2 on M . Then

∆f = d ∗ df = −2i∂∂f
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Proposition 6. A 1-form is harmonic if and only if it is closed and co-closed

Proof. Let ω be a harmonic 1-form. Locally it is exact and so is closed. It is
co-closed by the above lemma.

Now let ω be closed and co-closed. Closed implies locally it is exact,
ω = df for some f . Since it is co-closed, ∆f = 0 by the above lemma.

Definition 18. A 1-form is holomorphic if locally it can be written as
ω = df where f is holomorphic.

Proposition 7. (i) ω is holomorphic if and only if for all coordinates z,
when we write ω = udz + vdz, then v = 0 and u is holomorphic in z.

(ii) If u is a harmonic function, then ∂u is a holomorphic 1-form.
(iii) A holomorphic 1-form is harmonic.
(iv) A 1-form is holomorphic if and only if there is a harmonic 1-form α

such that ω = α + i ∗ α.
(v) A 1-form ω is holomorphic if and only if it is closed and ∗ω = −iω

Proof. (i) Suppose ω is holomorphic. Then locally, ω = df where f is holo-
morphic. So ω = (∂ + ∂)f = fzdz + fzdz. Since f is holomorphic, fz = 0
and fz is a holomorphic function.

Now suppose for all coordinates z, ω = udz with u holomorphic. Then
locally u has a primitive, i.e., there is a holomorphic function g such that
u = gz locally. Then dg = gzdz + gzdz = udz = ω.

(ii) Let u be a harmonic function. So ∂∂u = 0. Since ∂u = uzdz, ∂uz = 0,
i.e., uz,z = 0. So uz is holomorphic. By (i), ∂u is a holomorphic 1-form.

(iii) Let ω be holomorphic. Then ω = udz with uz = 0. By previous
proposition to show ω is harmonic it suffice to show it is closed and co-closed
which is immediate.

(iv) Suppose α is a harmonic 1-form. Then it is closed and co-closed. So

0 = dω = (uz − vz)dz ∧ dz

0 = d ∗ ω = −i(uz + vz)dz ∧ dz

Hence uz = 0 = vz. So u and v are holomorphic functions. So udz and
vdz are holomorphic 1-forms. So α = ω1 + ω2 where ω1, ω2 are holomorphic
1-forms. Since α+ i ∗ α = 2ω1, this shows α+ i ∗ α is holomorphic.

Now let ω be holomorphic. Define α = (ω − ω)/2. Since ω and ω are
harmonic, α is too. Calculation shows α + i ∗ α = ω.
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(v) Let ω be holomorphic. Then it is harmonic and so is closed.
Now suppose ω is closed and ∗ω = −iω. If we write ω = udz+ vdz, then

∗ω = −iω implies ω = udz. The fact that ω is closed implies uz = 0, i.e., u
is holomorphic.

1.4 More examples

6. graphs of analytic functions: This is a trivial example, but serves to
motivate the next example. Let V ⊂ C be a domain. Let g(z) be holomorphic
on V . Let X be the graph of g. This is the subset of C2 given by

X = {(z, g(z)) : z ∈ V }

We give this the subspace topology from C2. We can cover it with a single
chart. Define π on X by π((z, g(z)) = z. Clearly this Riemann surface is
isomorphic to V .

7. Smooth affine plane curves

Instead of looking at a graph w = g(z), we look at a curve that is defined
implicitly g(z, w) = 0. We need a “calculus” result :

Theorem 2. (Implicit function theorem) Let f(z, w) be a polynomial in z
and w. Let

X = {(z, w) : f(z, w) = 0}

Let p0 = (z0, w0) ∈ X. Suppose ∂f

∂w
(p0) 6= 0 Then there is a holomorphic

function g(z) defined on a neighborhood of z0 such that there is a neighborhood
U of p0 for which U ∩X is the graph of g. Moreover, near z0, g

′ = −∂f

∂z
/ ∂f

∂w
.

We use the theorem to make X into a Riemann surface. The polynomial
f is non-singular if for every root (z, w) at least one of ∂f

∂z
and ∂f

∂w
is non-zero.

The graph of a non-singular polynomial is a smooth affine curve.
If p0 = (z0, w0) ∈ X with ∂f

∂w
(p0) 6= 0, then we apply the implicit function

theorem to get a holomorphic g(z) on a neighborhood U of z0 such that X
near p0 is the graph of g. The projection πz : (z, g(z)) = z then defines a
homomorphism of a neighborhood of p0 to U . The assumption of nonsingular
insures that these charts cover X. We need to check they are compatible.
If two overlapping charts both use projection with respect to the z variable,
then the transition function if just the identity. Likewise if they both use
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projection with respect to the z variable. The nontrivial case is when one
chart uses z and the other w. In this case the transition function is just g,
and so is analytic. (sketchy).

Recall that part of our definition of a Riemann surface is that it be con-
nected. For a general polynomial the graph need not be connected. We
can consider its connected components invidually and they are Riemann sur-
faces. A non-trivial theorem from algebraic geometry says that if f(z, w) is
irreducible, then then X is connected.

Note that these Riemann surfaces will never be compact. For each w,
f(z, w) is a polynomial in z and so has at least one zero.

8. Projective curves

We start by defining the projective plane P2. The construction is anal-
ogous to that for the projective line. P2 is the set of one dimensional sub-
spaces (over C) of C

3. We let [x : y : z] denote the 1-d subspace spanned
by a nonzero vector (x, y, z) in C3. Of course, the elements of this subspace
are of the form (λx, λy, λz) where λ ∈ C. We have the set P2 into a two
dimensional complex manifold as follows. Let

U1 = {[x : y : z] : x 6= 0}, U2 = {[x : y : z] : y 6= 0}, U3 = {[x : y : z] : z 6= 0}

On U1 we define φ1([x, y, z]) = (y/x, z/x). This is a homeomorphism of U1

onto C2. The definitions of φ2 and φ3 on U2 and U3 are analogous. Of course,
P2 is not a Riemann surface. It is compact. (Prove this!). So we can get
compact Riemann surfaces by looking at zero sets in this space.

Let f(x, y, z) be a polynomial in three complex variables. We say that it
is homogeneous of degree d if

f(λx, λy, λz) = λdf(x, y, z)

Note that for such a polynomial, the statement f([x : y : z]) = 0 is well
defined. This defines a subset X of P

2. Let Xi = X ∩ Ui = {[x : y : z] : x 6=
0, F (x, y, z) = 0}. This is homeomorphic to {(y, z) ∈ C2 : F (1, y, z) = 0}.
This last set is a affine plane curve. Is it smooth? Of course we need a
condition on F .

Definition 19. A homogeneous polynomial F is nonsingular if there is no
nonzero solution to the system of equations

∂F

∂x
=
∂F

∂y
=
∂F

∂z
= 0
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Lemma 4. Let F (z, y, z) be a homogeneous polynomial. Then F is nonsin-
gular if and only if each Xi is a smooth affine plane curve.

Proof. We only prove one direction: F nonsingular implies that each Xi is
smooth. Suppose X1 is not smooth. Then f(y, z) = F (1, y, z) is singular,
i.e., there is a (y0, z0) at which both ∂f

∂y
and ∂f

∂z
vanish and f(y0, z0) = 0.

Thus F (1, y0, z0) = 0. Now

∂F

∂x
(1, y0, z0) =

∂f

∂x
(y0, z0) = 0

∂F

∂y
(1, y0, z0) =

∂f

∂y
(y0, z0) = 0

If d is the degree of F , then

x
∂F

∂x
+ y

∂F

∂y
+ z

∂F

∂z
= dF

which shows that

∂F

∂z
(1, y0, z0) = 0

So if F is a nonsingular homogeneous polynomial, then each Xi is a
Riemann surface. The charts for the Xi provide charts that cover X. To
complete the proof that X is a Riemann suface we have to show that charts
coming from different Xi are compatible. We leave this to the reader.
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