
February 12, 2010

2 Existence theorems

2.1 Hilbert space review

I include here some notes on Hilberts spaces including a proof of the projec-
tion theorem. They are notes from 523a and the notation is a bit different.

Normed linear spaces are vector spaces with a norm. When they are com-
plete, i.e., every Cauchy sequence converges, we call them Banach spaces. A
Hilbert space is a vector space with an inner product which is complete in the
norm that comes from the inner product. I will only consider Hilbert spaces
which are vector spaces over the real or complex numbers. The properties of
the inner product are

Definition: Let H be a vector space over R or C. An inner product on H
is a function

( , ) : H ×H → F

where F is either R or C such that

(a) (x, y) = (y, x)
(b) (αx+ βy, z) = α(x, z) + β(y, z)
(c) (x, x) ≥ 0
(d) (x, x) = 0 if and only if x = 0.

In the above, x, y, z ∈ H and α, β are real or complex numbers.

In the real case property (a) just says that (x, y) = (y, x). Properties (a)
and (b) imply that in the complex case

(z, αx+ βy) = α(z, x) + β(z, y)

We say that the inner product is linear in the first argument and anti-linear
in the second argument. It is just a convention that we do things this way.
We could just as well make the convention that the inner product is linear
in the second argument and anti-linear in the first argument. Unfortunately,
both conventions are used. I am using the convention that mathematicians
use, but physicists use the other convention.

Given an inner product we can define a norm by

||x|| =
√

(x, x)
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By (c) the quantity inside the square root is negative.

Proposition H.1.1: The norm defined above is indeed a norm. In particular
we have the triangle inequality

||x+ y|| ≤ ||x|| + ||y||

We also have the the Cauchy-Schwarz inequality

|(x, y)| ≤ ||x||||y||

Furthermore, we have the parallelogram identity

||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2

Remark: Draw a parallelogram with vertices at 0, x, y, and x+y. Then the
parallelogram identity says the sum of the squares of the lengths of the four
sides is related to the sum of the squares of the lengths of the diagonals. This
is not true in arbitrary normed linear spaces. In fact, if you have a norm for
which the parallelogram identity holds, then you can define an inner product
so that ||x|| =

√

(x, x).

Examples 1. Rn and Cn with the usual inner product or “dot product”

(x, y) =
n

∑

i=1

xiyi

are Hilbert spaces.

2. Let l2 denote the set of sequences (xn)∞n=1 which are square summable, i.e.,
∑

n |xn|
2 < ∞. If we take real sequences we will have a Hilbert space over

R, and if we take complex sequences we will have one over C. If x = (xn)∞n=1

and y = (yn)
∞
n=1 are two such sequences then their inner product is

(x, y) =
∞

∑

n=1

xnyn

This is a Hilbert space. We proved this space was complete in class.
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3. Consider the set of continuous functions on [0, 1], C([0, 1]). We can define
an inner product on it by

(f, g) =

∫

1

0

f(x)g(x)dx

This is a valid inner product, but the set of continous functions is not com-
plete in this inner product, i.e., there are sequences which are Cauchy in the
norm that comes from this inner product, but do not converge in norm to
a continuous function. By abstract nonsense every metric space has a com-
pletion. We can define L2([0, 1]) as this completion. If you look at how you
actually construct this completion, then L2 is a set of equivalence classes of
Cauchy sequences. Yuk. Luckily there is a much more concrete realization of
L2([0, 1]) - the set of functions on [0, 1] whose square is Lebesgue integrable.
Thus one motivation for studying the Lebesgue integral is that it gives a con-
crete representation of the completion of the space of continuous functions
in this norm.

Hilbert spaces are vector spaces, but they are much more. The inner
product lets us talk about angles. In particular it makes sense to say that
two elements of the Hilbert space are at right angles or orthogonal.

Definition: We say that x and y are orthogonal if (x, y) = 0. We denote
this property by x ⊥ y.

More generally we can define the angle θ between two elements of the
Hilbert space x and y by the equation

cos(θ) =
(x, y)

||x||||y||

The following definition will play an important role in the theory.

Definition: Let M be a subspace of the Hilbert space. The orthogonal
complement of M , denoted M⊥, is

M⊥ = {x : (x, y) = 0 for all y ∈M}

In this definition M can be any subset of the space. In particular it need
not be a subspace. For any subset M , M⊥ will be a subspace. In fact we
have
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Proposition H.1.2: Let M be a subset of the Hilbert space. Then M⊥ is
a closed subspace. If M itself is a closed subspace then (M⊥)⊥ = M .

Proof: This will be a homework problem.

Projection theorem: Let M be a closed subspace. Then for every x in
the Hilbert space there exist unique vectors y ∈ M and z ∈ M⊥ such that
x = y + z. Furthermore,

||x||2 = ||y||2 + ||z||2 (1.1)

and ||x−y|| is equal to the distance from x to M . (Recall that this is defined
to be the inf of the distances ||x− w|| where w ranges over M .)

Terminology: y is called the projection or orthogonal projection of x onto
M . Let P be the map which sends x to y. P is called the orthogonal
projection onto the subspace M . It follows from the theorem that it is a
linear operator.

Application: Suppose we want to approximate functions in L2([0, 1]) by
tenth degree polynomials. First, we should understand that this is not a
precise question yet. We have to decide how we will measure the “goodness”
of an approximation. Suppose we decide that we want the tenth degree
polynomial p(x) that best approximates f(x) in the sense that the L2 norm
of f(x) − p(x) is minimized. The set of polynomials with degree less than
or equal to ten is a subspace of the Hilbert space. It is a closed subspace,
but this is not trivial and we will not show it here. Let P be the orthogonal
projection onto this subspace. We claim that the best approximation to
f(x) is in fact Pf . To see this, note that the projection theorem says that
||f − Pf ||2 is equal to the distance from f to M . The definition of the
distance from f to M is

dist(f,M) = inf
p∈M

||f − p||2

So ||f − Pf ||2 ≤ ||f − p||2 for all p ∈ M . The practical person will want
to know how we compute Pf . This will have to wait until we have learned
about bases.

We now turn to the proof of of the projection theorem. We will use the
following proposition, but first we need a definition.
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Definition: A subset E is convex if x, y ∈ E and 0 ≤ t ≤ 1 implies tx +
(1 − t)y ∈ E.

Proposition H.1.2: Let E be a nonempty closed convex subset. Then there
is a unique x in E which is closest to the origin, i.e., ||x|| ≤ ||y|| for all y ∈ E.

Proof of the projection theorem: Fix an x. Let

x+M = {x+ w : w ∈M}

So x+M is just M shifted by x. Think of M as a plane through the origin.
Then x+M is another plane which will not go through the origin in general.
(It will go through the origin only if −x ∈ M , or equivalently, x ∈ M . ) It
is easy to see that x + M is closed (since M is ) and convex (since M is a
subspace). By the previous proposition x+M contains a unique element of
minimal norm. Define z to be this element. Then we define y to be x − z.
Of course we automatically have x = y + z. Since z ∈ x+M , z = x+ w for
some w ∈ M . Thus x = y + x+ w. So y = −w and this shows that y ∈ M .
We need to show that z ∈M⊥.

It is enough to show that (z, w) = 0 for every w ∈ M with ||w|| = 1.
Recall that z is the element of x+M with the smallest norm. For any scalar
c, z − cw is another element of x+M . So ||z|| ≤ ||z − cw||, for all scalars c.
This implies

(z, z) ≤ (z, z) + |c|2 − c(z, w) − c(w, z)

and so
0 ≤ |c|2 − c(z, w) − c(w, z)

Now take c = (z, w) and we get that 0 ≤ −|c|2, and so c = 0. Thus z ∈M⊥.
Property (1.1) follows from x = y + z and the fact that y and z are

orthogonal. By the definition of z, ||x − y|| = ||z|| is the distance from the
origin to x + M , i.e., the inf of ||x + w|| as w ranges over M . This is the
same as the inf of ||x− w|| as w ranges over M since M is a subspace. But
this last inf is the definition of the distance from x to M .

The uniqueness part of the theorem is left to the reader.

Proof of proposition H.1.2: Define

d = inf
y∈E

||y||

5



We have to show that there is an x ∈ E with ||x|| = d and that it is unique.
Let y, z ∈ E. By the parallelogram identity

||y − z||2 + ||y + z||2 = 2||y||2 + 2||z||2

Since E is convex, (y + z)/2 ∈ E. Hence

||(y + z)/2|| ≥ d

Thus we have
||y − z||2 ≤ 2||x||2 + 2||y||2 − 4d2

If y and z both satisfy ||y|| = d and ||z|| = d, then the above implies ||y−z|| =
0. This proves uniquesness.

Now let xn be a sequence in E with ||xn|| → d. By the above

||xn − xk||
2 ≤ 2||xn||

2 + 2||xk||
2 − 4d2

As n and k go to ∞ the right side converges to 0. Thus xn is a Cauchy
sequence. Since Hilbert spaces are complete we can let x be the limit of this
Cauchy sequence. If ||xn − x|| → 0, then by the triangle inequality it follows
that ||xn|| → ||x||. But we chose the xn so that ||xn|| → d, so ||x|| = d.

2.2 Weyl’s Lemma

Theorem 1. (Weyl’s Lemma) Let φ be a measurable square integrable
function on the unit disc D. The function φ is C2 and harmonic if and only
if

∫ ∫

D

φ∆η = 0 (1)

for all C∞ functions η on D with compact support.

Proof: The implication that φ harmonic implies (1) is fairly short and was
proved by Prof. Wehr.

If φ is C2, then showing that (1) implies that φ is harmonic is also fairly
short and was proved by Prof. Wehr.

The real heart of the theorem is showing that if φ satisfies (1), then φ is
C2. The general strategy is to construct a carefully chosen η to use in (1).
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Let ρ(r) be a C∞ function on [0,∞) such that 0 ≤ ρ(r) ≤ 1 and

ρ(r) = 1, 0 ≤ r < ǫ/2

ρ(r) = 0, r > ǫ

and let

ω(r) = −
1

2π
ρ(r) ln(r)

and let

γ(z, ζ) = 4
∂2

∂z∂z
ω(|z − ζ |)

This is not defined when z = ζ , and we just define it to be 0 for z = ζ .
Oviously, γ(z, ζ) = 0 when |z − ζ | > ǫ. Since log |z − ζ | is harmonic in z for
z 6= 0, we also have γ(z, ζ) = 0 when |z − ζ | < ǫ/2.

Now we define the function that we will eventually use as η in (1). Let
µ(z) be C∞ with support in D1−2ǫ, the disc of radius 1 − 2ǫ centered at 0.
Define

ψ(z) =

∫ ∫

D

ω(|ζ − z|)µ(ζ)
dζ ∧ dζ

−2i

The support condition on µ implies we can change the integration region
from D to all of C. Then we can do a change of variables:

ψ(z) =

∫ ∫

C

ω(|ζ − z|)µ(ζ)
dζ ∧ dζ

−2i

=

∫ ∫

C

ω(|ζ |)µ(ζ + z)
dζ ∧ dζ

−2i

Since µ(z) is C∞ and compactly supported, standard analysis theorems show
ψ is C∞ in z.

We will take η = ψ in (1), so we need to compute the Laplacian of ψ. We
split ψ as

ψ(z) = α(z) + β(z)

α(z) =
−1

2π

∫ ∫

|ζ−z|<ǫ/2

µ(ζ) log |ζ − z|
dζ ∧ dζ

−2i

β(z) =

∫ ∫

|ζ−z|≥ǫ/2

ω(|ζ − z|)µ(ζ)
dζ ∧ dζ

−2i
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We claim

4
∂2

∂z∂z
α(z) = −µ(z)

4
∂2

∂z∂z
β(z) =

∫ ∫

D

γ(z, ζ)µ(ζ)
dζ ∧ dζ

−2i

Looking at where µ is supported, we see that the integration region in the
definition of β can be extended to all of C. Then the equation for the
Laplacian of β just follows from the definition of γ(ζ, z).

To compute the Laplacian of α, we start by computing ∂α/∂z. Since
log |ζ − z| is harmonic in z, its derviative with respect to z is analytic. A
simple calculation shows

∂ log |ζ − z|

∂z
= −

1

2

1

ζ − z

So we have

∂α

∂z
=

1

4π

∫ ∫

|ζ−z|<ǫ/2

µ(ζ)

ζ − z

dζ ∧ dζ

−2i

We would like to change the region of integration to all of C so we can do a
change of variables. But µ is not supported in just the region of integration.
So we will “cutoff” µ.

Define ν(ζ) = ρ(2|ζ−z|)µ(ζ). Note that ν(ζ) is supported in |ζ−z| < ǫ/2.
Now

∂α

∂z
(z) =

1

4π

∫ ∫

|ζ−z|<ǫ/2

ν(ζ)

ζ − z

dζ ∧ dζ

−2i
+

1

4π

∫ ∫

|ζ−z|<ǫ/2

µ(ζ) − ν(ζ)

ζ − z

dζ ∧ dζ

−2i

Now µ(ζ)− ν(ζ) = 0 for |ζ − z| < ǫ/2. So the last integral is holomorphic in
z. So to compute ∂2α/∂z∂z, we can ignore this term. The support property
of ν give

1

4π

∫ ∫

|ζ−z|<ǫ/2

ν(ζ)

ζ − z

dζ ∧ dζ

−2i
=

1

4π

∫ ∫

C

ν(ζ)

ζ − z

dζ ∧ dζ

−2i

=
1

4π

∫ ∫

C

ν(ζ + z)

ζ

dζ ∧ dζ

−2i
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So

∂2α

∂z∂z
(z) =

1

4π

∫ ∫

C

νz(ζ + z)

ζ

dζ ∧ dζ

−2i
=

1

4π

∫ ∫

C

νz(ζ)

ζ − z

dζ ∧ dζ

−2i
(2)

To continue the derviation of the formula for the Laplacian of α, we need
the following “Cauchy integral formula”.

Lemma 1. (Cauchy integral formula for non-analytic functions) Let
B be an open connected subset of C whose boundary is a finite number of
C1 Jordan curves. Let u be a complex valued C1 function on B which is not
necessarily analytic. Then for z ∈ B,

2πiu(z) =

∫

∂B

u(ζ)

ζ − z
dζ +

∫ ∫

B

∂u

∂ζ
(ζ)

1

ζ − z
dζ ∧ dζ

Note that in (2) we can replace the integration region by a region that
we can apply the lemma to. This yields

∂2α

∂z∂z
(z) = −

1

4
µ(z)

We now use (1) with η = ψ. We get

0 =

∫ ∫

D

φ∆ψ =

∫ ∫

D

φ∆α +

∫ ∫

D

φ∆β = −

∫ ∫

D

φ(z)µ(z)
dz ∧ dz

−2i

+

∫ ∫

D

φ(z)

[
∫ ∫

C

γ(z, ζ)µ(ζ)
dζ ∧ dζ

−2i

]

dz ∧ dz

−2i

Define

φ̃(ζ) =

∫ ∫

C

φ(z)γ(z, ζ)
dz ∧ dz

−2i

Note that φ̃ is C∞. We now have

∫ ∫

D

φ(z)µ(z)
dz ∧ dz

−2i
=

∫ ∫

D

φ̃(ζ)µ(ζ)
dζ ∧ dζ

−2i

This holds for all C∞ functions that are compactly supported in D. So φ = φ̃
a.e. on D.
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Proof. (of Cauchy integral formula) Fix a z in B and let ǫ > 0 be small
enough that the ball of radius ǫ about z is contained in B. Let Bǫ be B minus
the closed ball of radius ǫ about z. The boundary of Bǫ is the boundary of
B plus the circle of radius ǫ about z. Stoke’s theorem says

∫

∂Bǫ

u(ζ)

ζ − z
dζ =

∫ ∫

Bǫ

d

[

u(ζ)

ζ − z

]

dζ

which becomes
∫

∂B

u(ζ)

ζ − z
dζ − i

∫

2π

0

u(z + ǫeiθ)dθ =

∫ ∫

Bǫ

∂

∂ζ

[

u(ζ)

ζ − z

]

dζ ∧ dζ

Let ǫ→ 0 to get the lemma.

2.3 The Hilbert space of forms

Let D be a region inM . Recall that the inner product for measurable 1-forms
for L2(D) is given by

(ω1, ω2) =

∫ ∫

D

ω1 ∧ ∗ω2

If D is covered by a single chart and ω = udz + vdz, we have

(ω1, ω2) = 2

∫ ∫

D

(|u|2 + |v|2)dxdy

Definition 1. E is the closure in L2(M) of

{df : f is C∞ function onM with compact support}

And E∗ is

E∗ = {ω ∈ L2(M) : ∗ω ∈ E} = {∗ω ∈ L2(M) : ω ∈ E}

The second characterization of E∗ follows from ∗∗ = −1 and the fact that E
is a subspace.

A remark is in order. If M is compact, then every function on M is
compactly supported. So in this case E is the space of smooth exact forms.
However, in general E does not contain all the smooth exact forms. Suppose

10



M is the unit disc. Let f be a smooth harmonic function on an open set that
contains the closed unit disc. Then df is an exact 1-form. It is harmonic,
and we will see later that this implies it is not in E.

By definition E⊥ is the set of ω orthogonal to all the forms in E. By con-
tinuity of the inner product it suffices to only require that they be orthogonal
to a dense subset of E. So

E⊥ = {ω : (ω, df) = 0 ∀ f which areC∞ function onM with compact support}

Similarly,

(E∗)⊥ = {ω : (∗ω, df) = 0 ∀f · · ·}

Proposition 1. Let α be a C1 form. Then α ∈ (E∗)⊥ if and only if α is
closed. And α ∈ E⊥ if and only if α is co-closed.

Proof. Let α be a C1 form and f a C1 function with compact support. So
there is an open set D containing the support of f such that the closure of
D is compact. Then

(α, ∗df) =

∫

D

α ∧ ∗ ∗ df = −

∫

D

α ∧ df = −

∫

D

[d(αf) − dα ∧ f ]

By Stokes theorem,
∫

D

d(αf) =

∫

∂D

αf = 0

by the support assumption. So

(α, ∗df) =

∫

D

dα ∧ f

If α is closed, then this gives (α, ∗df) = 0. So α ∈ (E∗)⊥. If α ∈ (E∗)⊥, we
have (α, ∗df) = 0. So

∫

D

dα ∧ f = 0

for all C∞ f with compact support. This implies dα = 0, i.e., α is closed.
The second part follows immediately since E∗ is just the image of E under

the ∗ map and the co-closed forms are the image of the closed forms under
the map ∗.
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Corollary 1. E and E∗ are orthogonal subspaces.

Proof. Let ω ∈ E. Then there is a sequence of C∞ functions such that dfn

converges to ω in L2. Since dfn is exact, it is closed. So by the proposition
dfn ∈ (E∗)⊥. Since (E∗)⊥ is closed, ω belongs to it as well.

Now we define H = E⊥ ∩ (E∗)⊥. (H stands for harmonic; we will see
that the forms in H are harmonic.) Since E and E∗ are orthogonal, Hilbert
space theory says

H = (E ⊕ E∗)⊥

L2(M) = E ⊕ E∗ ⊕H

Our next goal is to show that H consists exactly of the harmonic forms.
Let c be a simple closed curve in our Riemann surface M . Cover c by a

finite number of charts. Let Ω be the union of their domains. Shrinking Ω if
necessarily we can assume that topologically it is an annulus and that Ω\c is
two strips. The curve has a direction. Let Ω− ( Ω+ )be the strip in Ω\ c that
is on the “left” (“right”) as we traverse c. Let Ω0 be a subset of Ω which is
smaller in the sense that the boundary of Ω0 has no points in common with
that of Ω. Define Ω±

0 in the same way.
Let f be a real-valued function on M with is 1 on Ω−

0 and 0 on M \ Ω−

and such that f is smooth on M \ c. We next define a smooth 1-form η by

ηC = df, on Ω \ c

ηC = 0, on (M \ Ω) ∪ c

Then η is a closed, smooth, compactly supported real value 1-form. It is not
in general exact. We call ηc the 1-form associated with the curve c. (It is not
unique).

Proposition 2. Let α ∈ L2(M) be C1 and closed. Then

∫

c

α = (α, ∗ηc)

Proof. Homework problem.

12



Proposition 3. Let α ∈ L2(M) be C1. Then α is exact (respectively co-
exact) if and only if (α, β) = 0 for all co-closed (closed) smooth differentials
β of compact support.

Proof. Let α be C1 and exact, and let β be co-closed with compact support.
So the support of β is contained in some region D whose closure is compact.
We have

(α, β) =

∫

D

df ∧ ∗β =

∫

D

[d(f ∗ β) − fd ∗ β] =

∫

∂D

f ∗ β = 0

To go the other way, suppose (α, β) = 0 for all co-closed smooth com-
pactly supported β. The closure of the set of all such β is E∗, so α ∈ (E∗)⊥.
By prop 1 this implies α is closed. This implies it is locally exact. For global
exactness we need to show that

∫

c
α = 0 for all simple closed curves. This

follows from prop 2 and the (α, β) = 0 hypothesis.

Theorem 2. H is the set of harmonic differentials in L2(M).

Proof. By a proposition from chapter 1, if ω is harmonic then it is smooth,
closed and co-closed. By proposition 1, this shows it is in both E⊥ and (E∗)⊥.
So ω ∈ H .

Now let ω ∈ H . Harmonicity is a local property, so it suffice to show ω
in harmonic on a chart (D, z). We can assume the closure of D is compact.
Write ω = pdx + qdy. Let η be a smooth real-valued function supported in
D. Then ηx and ηy are also smooth and supported in D. (The subscripts
means partial with respect to that variable.) So ηx ∈ E and ∗ηy ∈ E∗. Since
ω is orthogonal to both of these subspaces,

0 = (ω, dηx) =

∫ ∫

D

ω ∧ ∗dηx =

∫ ∫

D

(pdx+ qdy) ∧ ∗(ηxxdx+ ηxydy)

=

∫ ∫

D

(pdx+ qdy) ∧ (−ηxydx+ ηxxdy) =

∫ ∫

D

(pηxx + qηxy)dx ∧ dy

0 = (ω, ∗dηy) =

∫ ∫

D

ω ∧ dηy =

∫ ∫

D

(pdx+ qdy) ∧ (ηyxdx+ ηyydy)

=

∫ ∫

D

(pηyy − qηyx)dx ∧ dy
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Adding these equations gives

0 =

∫ ∫

D

p(ηxx + ηyy)dx ∧ dy

By Weyl’s lemma this implies that p is smooth and harmonic. Since ∗ω ∈
H , we can apply the same argument to ∗ω which shows q is smooth and
harmonic. All we really need from this is that p and q are C1, and so ω is
C1. So by proposition 1, we can conclude ω is closed and co-closed. By the
proposition from chapter 1 this implies it is harmonic.

Corollary 2. (a) The closure (in L2(M)) of the space of closed forms is
E ⊕H. The closure of the space of co-closed forms is E∗ ⊕H.
(b) The square integrable smooth differentials are dense in L2(M).
(b’) The smooth differentials with compact support are dense in L2(M).

Proof. The proofs of (a) and (b) follow from putting together various things
we have proved and left as a homework exercise. The proof of (b’) requires
knowning a topolocial fact about M that we haven’t proved yet. See the
book for details.

We repeat a remark we made before: if M is not compact, then not all
exact forms are in E.

2.4 The Hilbert space of forms

Recall that a 1-form is harmonic if it is locally given by df where f is a
harmonic function. Harmonic diferentials immediately give us holomorphic
1-forms. (Recall that if α is harmonic, then α + i ∗ α is holomorphic.)

On a compact Riemann surface there are no holomorphic functions (other
than constants). We want to prove there do exist meromorphic functions
and to do that we first construct meromorphic differentials. These will follow
immediately from the construction of differentials which are harmonic except
at a point. To do this we want functions that are harmonic except at a point.

Consider for a moment the Riemann surface C. There are harmonic
functions, but not ones in L2. Suppose we allow a singularity at the origin.
Then z−n is an example of a harmonic on C \ {0}. It is not L2 but it is if
we chop out a small neighborhood of the origin. Our goal in this section is
to show that for a Riemann surface M and a point P0 in it, we can find a
function which is harmonic on M \ {P0} and whose singularity at P0 is (in
local coords) z−n.
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E (exact)

E* (co−exact)

H (harmonic) 

closed

co−closed

Theorem 3. Let M be a Riemann surfact, P0 ∈ M . Let z be a local co-
ordinate centered at P0. Then there is a function u on M \ {P0} such that
u − z−n is harmonic on a neighborhood of P0. For any neighborhood N of
P0,

∫ ∫

M\N

du ∧ ∗du <∞

Furthermore (du, df) = 0 = (du, ∗df) for all smooth functions that vanish in
a neighborhood of P0 and have compact support.

Note that if M is compact and u1, u2 are two such functions, then their
difference is harmonic on all of M . So it is a constant. Thus for compact M
the function in the theorem is unique up to an additive constant.
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Proof. Let D be the domain of our chart z. We can assume its range is the
unit disc. (A subdomain of D is mapped onto some disc centered at the
origin, and then we rescale.) Let 0 < a < 1. Define

h(z) = z−n +
zn

a2n
, if |z| ≤ a

h(z) = 0 otherwise

θ(z) = h(z) if |z| ≥ a/2

θ(z) = smooth if |z| < a

We use dθ to denote the form which is dθ where θ is smooth and is
whatever you want on |z| = a where θ is not smooth. This is in L2(M).
Note that dθ is not exact. We use the theory from the last section to split it
as

dθ = α + ω

where α ∈ E and ω ∈ E⊥ = E∗ ⊕ H . We will show two things: (1) α is
smooth on M . (2) α is harmonic on M \ Cl(Da/2). We first assume these
are true and finish the proof.

Since α is smooth, it is exact if and only if it is orthogonal to all co-closed
smooth 1-forms with compact support. Such forms are in E∗ ⊕H , and α is
in E, so it is orthogonal. So α is exact, i.e., α = df for some smooth function
f on M .

We claim that this f is harmonic on M \ Cl(Da/2). Since α is harmonic
on this set, we can write locally α = dh for some locally harmonic function
h. On this neighborhood, dh = df , so ∆f = ∆h = 0 on the nbhd. So f is
harmonic on M \ ClDa/2.

By the original splitting, ω = dθ − α = d(θ − f). So d(θ − f) ∈ E⊥. θ is
smooth on Da and f is smooth everywhere, so d(θ − f) is co-closed on Da.
On Da, d(θ − f) is exact and so is closed on Da, so d(θ − f) is harmonic on
Da and so θ − f is harmonic on Da.

Now define

u = f − θ + h

On Da, f − θ and h are harmonic, so u is too. On |z| ≥ a/2, f is harmonic
and h− θ = 0. So u is harmonic on M \ {P0}.
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We consider just what properties of h were needed for the proof. There
really just two: h is harmonic in a/2 < |z| < a and we needed that ∗dθ is
zero in the direction of the circle |z| = a.

As before, let P0 be a point in the Riemann surface and z a chart centered
at P0. Suppose there are two points P1, P2 that are close enough to P0 that
their coordinates w1 = z(P1) and w2 = z(P2) satisfy |w1|, |w2| < a/2. Then

h(z) = log

∣

∣

∣

∣

(z − w1)(z − a2/w1)

(z − w2)(z − a2/w2)

∣

∣

∣

∣

Theorem 4. Let M be a Riemann surfact, P1, P2 ∈ M . Let zi be a local
coordinates centerd at Pi for i = 1, 2. Then there is a real valued function u
on which is harmonic on M \ {P1, P2} and such that u− log|z1| is harmonic
in a nbhd of P1 and u+ log|z2| is harmonic in a nbhd of P2. For every open
set N containing P1 and P2,

∫

M\N

du ∧ ∗du <∞

Furthermore (du, df) = 0 = (du, ∗df) for all smooth functions that vanish in
neighborhoods of P1 and P2 and have compact support.

Proof. We find points P1 = Q0, Q1, · · · , Qn = P2 such that pairs Qj=−1, Qj

are close enough that we can apply the previous theorem. Let uj be the
harmonic (with singularities) function. Then we just take u = u1 + · · · +
un.

3 Meromorphic functions and differentials

Definition 2. A meromorphic differential ω is an assignment of a mero-
morphic function f(z) to every chart z so that f(z)dz tranform appropriately
under a coordinate change, i.e., they define a 1-form. We say ω has a pole
at a point in the domain of the chart if f(z) does. Suppose ω has a pole at
p. Let z be a chart centered at p. Writing ω = f(z)dz, f(z) has a Laurent
series:

f(z) =
∞

∑

n=N

anz
n

where N is negative. We define the residue of the form at p to be a−1.
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One of the homework problems is to show that the definition of residue
is well defined, i.e., does not depend on the chart.

Let ω be meromorphic and ω = f(z)dz in some chart. If f(z) has a zero
at P , we define the order of f at P to be the order of the zero of f(z). If
f(z) has a pole at P we define the order to be −n where n is the order of
the pole. We denote the order in both cases by ordPf .

Theorem 5. (a) Let P ∈ M and let z be a coordinate centered at P . Then
for each positive integer n, there is a meromorphic differential ω on M whose
only pole is at P and whose singular part there is z−n−1.
(b) Let P1, P2 be distinct points in M . Let zj be coordinates centered at Pj

for j = 1, 2. There is a meromorphic differential ω whose only poles are at
P1, P2. Its singular parts there are 1/z1 and −1/z2, respectively.

Proof. For (a) let u be the function with is harmonic except to a singularity
of 1/zn at P . For (b) let u be the function with is harmonic except for
singularity log(z1) at P1 and − log(z2). Let α = du. So α is a harmonic form
except at ... We define

ω =
−1

2n
(α+ i ∗ α)

ω = α + i ∗ α

Theorem 6. Let k > 1 and let P1, · · · , Pk be distinct points on a Riemann
surface M . Let c1, · · · , ck ∈ C such that

∑k
j=1

cj = 0. Then there is a
meromorphic differential whose poles are at P1, · · · , Pk such that ordPj

ω =
−1 and resPj

ω = cj for j = 1, · · · , k.

Proof. Let P0 be a point in M distinct from all the Pj. Let ωj be a mero-
morphic differential with poles at P0 and Pj . Both poles have order −1. The
residue at Pj is +1 and the residue at P0 is −1. Then we just let

ω =

k
∑

j=1

cjωj

The hypothesis that
∑

j cj = 0 implies that the residue at P0 is zero, i.e.,
there is no pole there.
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Corollary 3. Every Riemann surface has non-constant meromorphic func-
tions

Proof. Let P1, P2, P3 be distinct points in the surface. Let ω1, ω2 be mero-
morphic differentials such that ω1 has poles at P1, P2 and ω2 has poles at
P2, P3 and

ordP1
ω1 = ordP2

ω1 = ordP2
ω2 = ordP3

ω2 = −1

and

resP1
ω1 = +1, resP2

ω1 = −1,

resP2
ω2 = +1, resP3

ω1 = −1

Define f = ω1/ω2. (Just what this means will be the subject of a homework
problem.) Then f is meromorphic with a pole at P1 and a zero at P3. In
particular it is not constant.

Proposition 4. Let M be a compact Riemann surface and ω a meromorphic
differential. Then

∑

P∈M

resP ω = 0

The sum is over the poles and zeroes of ω.

We defer the proof till later.
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