Math 520b - Homework 2

1. Let H be a Hilbert space. Let E_{1}, E_{2} be closed subspaces which are orthogonal. Prove there is a third closed subspace E_{3} which is orthogonal to both E_{1} and E_{2} and such that every $v \in H$ can be written in a unique way as $v=v_{1}+v_{2}+v_{3}$ where $v_{i} \in E_{i}$. Show that $E_{3}=\left(E_{1} \oplus E_{2}\right)^{\perp}=E_{1}^{\perp} \cap E_{2}^{\perp}$. You may assume the projection theorem as stated in the notes or in Farkas and Kra.
2. (From Farkas and Kra) (a) Let $f \in L^{2}[0,1]$. Show that f is equal to a constant almost everywhere if and only if

$$
\begin{equation*}
\int_{0}^{1} f(z) g^{\prime}(x) d x=0 \tag{1}
\end{equation*}
$$

for all C^{∞} functions with compact support. You can think of this as a 1 d analog of Weyl's lemma.
(b) If we place the hypothesis (1) by

$$
\begin{equation*}
\int_{0}^{1} f(z) g^{\prime \prime}(x) d x=0 \tag{2}
\end{equation*}
$$

what can you conclude about f ?
3. Let ϕ be a C^{2} function on the unit disc that is harmonic. Prove that ϕ is C^{∞}.
4. Prove parts (a) and (b) of the corollary to theorem 2 which says that H is the set of harmonic forms.
5. A meromorphic differential (or 1-form) ω is a 1-form such that in every chart $z, \omega=f(z) d z$ where $f(z)$ is meromorphic. The form is said to have a pole at p if f does. Suppose ω has a pole at p. Let z be a chart centered at p. Writing $\omega=f(z) d z, f(z)$ has a Laurent series:

$$
f(z)=\sum_{n=N}^{\infty} a_{n} z^{n}
$$

where N is negative. We define the residue of the form at p to be a_{-1}. In general the coefficients in the Laurent series depend on the choice of chart. Prove that the residue does not depend on the choice of chart. Hint: how do you compute the coefs in a Laurent series?

