Math 520b - Homework 4

1. Let M be a compact Riemann surface of genus g. Let $P_{1}, \cdots, P_{k} \in M$ and let n_{1}, \cdots, n_{k} be positive integers. Find the dimension of the vector space of meromorphic forms whose poles are a subset of $\left\{P_{1}, \cdots, P_{k}\right\}$ and such that the order of the pole at P_{j} (if there is one) is at most n_{j}.
2. Prove that for the Riemann sphere two divisors U_{1} and U_{2} are equivalent if and only if $\operatorname{deg}\left(U_{1}\right)=\operatorname{deg}\left(U_{2}\right)$.
3. Let $\tau \in \mathbb{C}$ have positive imaginary part. Let L be the lattice $\mathbb{Z}+\mathbb{Z} \tau$. Let M be the Riemann surface which is the torus \mathbb{C} / L. The meromorphic functions on M are the meromorphic functions on \mathbb{C} which are doubly periodic with periods 1 and τ. For $p \in \mathbb{C}$ let γ_{p} be the closed contour which is the parallelogram with vertices $p, p+1, p+1+\tau, p+\tau$ traversed in that order. Let f be a doubly periodic meromorphic function on \mathbb{C}. Show that for p such that γ_{p} does not contain any poles or zeroes of f, we have

$$
\frac{1}{2 \pi i} \int_{\gamma_{p}} z \frac{h^{\prime}(z)}{h(z)} d z \in L
$$

4. Let M be the torus defined in the previous problem. Consider the divisor $U=P_{1}^{n_{1}} \cdots P_{k}^{n_{k}}$. We know that if it is principal, then $\operatorname{deg}(U)=0$. Define

$$
A(U)=\sum_{j=1}^{k} n_{j} P_{j}
$$

(Addition of points in the torus M is addition in $\mathbb{C} \bmod L$.) Prove that if U is principal, then $A(U)=0$. (We think of $A(U)$ as an element of the torus, so $A(U)=0$ means it is $0 \bmod L$.) This is "half" of Abel's theorem for the torus which says that a divisor U is principal if and only if $\operatorname{deg}(U)=0$ and $A(U)=0$.
5. Let M be a compact Riemann surface. Let $P_{1}, P_{2}, \cdots, P_{n}$ be distinct points in M. Prove that there is a meromorphic form such that for all j the form is non-zero at P_{j} and does not have a pole at P_{j}. Hint: Let Q be a point distinct from all the P_{j}. For large N what is the dimension of $L\left(Q^{-N}\right)$ and of $L\left(Q^{-N} P_{j}\right)$?

