Math 520b - Homework 5

1. In class we used but did not prove the following proposition.

Proposition: Let A be finite dimensional space of holomorphic functions on a domain $D \subset \mathbb{C}$. Let $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ be a basis. Define

$$
\Phi(z)=\operatorname{det}\left(\begin{array}{cccc}
\phi_{1}(z) & \phi_{2}(z) & \cdots & \phi_{n}(z) \\
\phi_{1}^{\prime}(z) & \phi_{2}^{\prime}(z) & \cdots & \phi_{n}^{\prime}(z) \\
\cdots & \cdots & \cdots & \cdots \\
\phi_{1}^{(n-1)}(z) & \phi_{2}^{(n-1)}(z) & \cdots & \phi_{n}^{(n-1)}(z)
\end{array}\right)
$$

Then the order of the zero of ϕ at z is $\tau(z)$.
In this problem we prove it. We abbreviate the above determinant by $\left[\phi_{1}(z), \phi_{2}(z), \cdots, \phi_{n}(z)\right]$.
(a) Let $f(z)$ be a holomorphic function on D. Use properties of determinants to show

$$
\operatorname{det}\left[f \phi_{1}, f \phi_{2}, \cdots, f \phi_{n}\right]=f^{n} \operatorname{det}\left[\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right]
$$

(b) Prove the prop by induction. Hint

$$
\operatorname{det}\left[\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right]=\phi_{1}^{n} \operatorname{det}\left[1, \phi_{2} / \phi_{1}, \cdots, \phi_{n} / \phi_{1}\right]
$$

2. Let f be meromorphic function on a Riemann surface M. Let c be a closed curve in M. Show that

$$
\frac{1}{2 \pi i} \int_{c} \frac{d f}{f}
$$

is an integer.
3. Let ω_{1}, ω_{2} be nonzero complex numbers such that their ratio is not real. Let L be the lattice they generate:

$$
L=\left\{n_{1} \omega_{1}+n_{2} \omega_{2}: n_{1}, n_{2} \in \mathbb{Z}\right\}
$$

Then \mathbb{C} / L is a Riemann surface (the torus). Prove that two tori are the same Riemann surface (conformally isomorphic) if and only if they have the same ω_{1} / ω_{2}.
4. In this problem we use Abel's thm to prove that the only compact Riemann surfaces of genus 1 are the tori. Let M be a Riemann surface with genus 1 . Then the Jacobian variety $J(M)$ is a torus. (You should check this is true but need not write anything.) We will show $\phi: M \rightarrow J(M)$ is a holomorphic bijection. The first two parts are easy. The third part is the interesting one.
(a) Prove ϕ is holomorphic.
(b) Prove ϕ is surjective.
(c) Prove ϕ is injective. Hint: suppose there are distinct points P, Q in M with $\phi(P)=\phi(Q)$ in $J(M)$. Use Abel's theorem to show there is a meromorphic function in $L(D)$ where D is the divisor P / Q. Show this contradicts what we know about gaps.
5. Let P, Q be distinct points in a compact Riemann surface M. Let $\tau_{P Q}$ be a meromorphic differential form with simple poles at P and Q, no other poles, residue +1 at P and -1 at Q. Let a_{j}, b_{j} be a canonical homology basis $(j=1,2, \cdots, g)$, and ζ_{j} the usual dual basis for holomorphic forms. Suppose also that

$$
\int_{a_{j}} \tau_{P Q}=0, \quad j=1,2, \cdots g
$$

Show that

$$
\int_{b_{j}} \tau_{P Q}=2 \pi i \int_{Q}^{P} \zeta_{j}
$$

where the curve from Q to P does not cross any of the a, b curves. Hint: Mimic what we did in class to compute $\int_{b_{j}} \tau_{P}^{(n)}$ where $\tau_{P}^{(n)}$ is the differential form with singular part $d z / z^{n}$ at P, no other poles and $\int_{a_{j}} \tau_{P}^{(n)}=0$.

