Math 520b - Homework 7

1. (Farkas and Kra, p. 187) Show that the Green's function is a conformal invariant, i.e., if $f: M \to N$ is conformal and g is the Green's function on N with singularity at f(P), then $g \circ f$ is the Green's function on M with singularity at P.

2. (a) Show that a simply connected subset of \mathbb{C} which is not all of \mathbb{C} is hyperbolic

(b) Show that \mathbb{C} is parabolic.

3. The goal of this problem is to prove the following result that I stated in class. If D is a domain and P is a boundary point for which there is an analytic arc that ends at P and intersects \overline{D} only at P, then there is a barrier at P, i.e., P is regular.

(a) First suppose that $D \subset \mathbb{C}$, P = 0, and the analytic arc is a line segment with one endpoint at the origin. Show there is a barrier in this case. Hint: \sqrt{z} .

(b) Reduce the general case to the above situation.

4. (taken from example on page 182 of Farkas and Kra.) Let D be a domain in \mathbb{C} with \overline{D} compact and ∂D regular. Let $z_0 \in D$. Let γ be the solution to the Dirichlet problem for D with boundary data $\gamma(z) = \log |z-z_0|$ for $z \in \partial D$. So γ is harmonic on D and continuous on \overline{D} . Define $g(z) = \gamma(z) - \log |z-z_0|$. Show that g is the Green's function on D with singularity at z_0 .

5. (a) Find the Green's function for \mathbb{D} with singularity at 0.

(b) Find the Green's function for \mathbb{D} with singularity at a general $w \in \mathbb{D}$.

6. The goal of this problem is to prove the following result that I stated in class: It u is harmonic and bounded in {0 < |z| < 1}, then u can be extended to a harmonic function on {|z| < 1}.
(a) Hint : coming.

1