Math 523a - Solutions to Final - Fall 2012

1. Let x_{n} be a sequence in \mathbb{R}. Define

$$
f(x)=\sum_{n=1}^{\infty} \exp \left(-n^{2}\left|x-x_{n}\right|\right)
$$

Prove that $f(x)<\infty$ a.e.
Solution: We will show that $\int f(x) d x<\infty$. This implies that $f(x)$ is finite a.e. Applying the monotone converge theorem to

$$
g_{n}(x)=\sum_{k=1}^{n} \exp \left(-k^{2}\left|x-x_{k}\right|\right)
$$

we conclude that

$$
\begin{aligned}
\int f(x) d x & =\int \lim _{n \rightarrow \infty} g_{n}(x) d x=\lim _{n \rightarrow \infty} \int g_{n}(x) d x \\
& =\sum_{n=1}^{\infty} \int \exp \left(-n^{2}\left|x-x_{n}\right|\right) d x=\sum_{n=1}^{\infty} \frac{2}{n^{2}}<\infty
\end{aligned}
$$

2. In this problem X is $[0, \infty) \times[0, \infty)$ and m is two dimensional Lebesgue measure.
(a) Let $f(x, y)=\exp \left(-(x+1)^{2} y\right)$. Prove that f is integrable on X.
(b) Let $\lambda_{n}>0$ with $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Find

$$
\lim _{n \rightarrow \infty} \int_{X} \exp \left(-(x+1)^{2}\left(y+\lambda_{n}\right)\right) d m
$$

Your answer should be a number and you should prove it.
Solution: (a) By Tonelli's theorem,

$$
\begin{aligned}
\int_{X} f(x, y) d m & =\int_{0}^{\infty}\left[\int_{0}^{\infty} \exp \left(-(x+1)^{2} y\right) d y\right] d x \\
& =\int_{0}^{\infty} \frac{1}{(x+1)^{2}} d x=1
\end{aligned}
$$

(b) Let $f_{n}(x, y)=\exp \left(-(x+1)^{2}\left(y+\lambda_{n}\right)\right)$ and $f(x, y)=\exp \left(-(x+1)^{2} y\right)$ as before. Then $f_{n}(x, y) \leq f(x, y) \in L^{1}$. As $n \rightarrow \infty, f_{n}(x, y)$ converges to $f(x, y)$ pointwise. So by the dominated convergence theorem, $\int_{X} f_{n} d m$ converges to $\int_{X} f d m$, which we computed in part (a) to be 1.
3. Give an example of an increasing function $F(x)$ on $[0,1]$ such that for all $0<a<b<1$ we have

$$
\int_{a}^{b} F^{\prime}(x) d x<F(b)-F(a)
$$

You should justify your answer.
Solution: Let q_{n} be an enumeration of the rationals in $(0,1)$. Let λ be the measure

$$
\lambda=\sum_{n=1}^{\infty} 2^{-n} \delta_{q_{n}}
$$

This is the Borel measure associated with the increasing function

$$
F(x)=\sum_{n: q_{n} \leq x} 2^{-n}
$$

Since λ is mutually singular with Lebesgue measure, $F^{\prime}(x)=0$ a.e. For any $0<a<b<1$ there is a rational q_{n} in (a, b) so $F(b)-F(a) \geq 2^{-n}$.
4. Let $g \geq 0$ be a Lebesgue measurable function on \mathbb{R}. Let m denote Lebesgue measure on \mathbb{R} and define another measure by $\mu=g m$, i.e.,

$$
\mu(E)=\int_{E} g d m
$$

Find the Lebesgue-Radon-Nikodym decomposition of m with respect to μ, i.e., express m as $f \mu+\lambda$ where f is a non-negative measurable function and $\lambda \perp \mu$.

Solution: Let $N=\{x: g(x)=0\}$. Let $\lambda(E)=m(E \cap N)$. Let $f(x)=1 / g(x)$ on N^{c} and $f(x)=0$ on N. Let $\nu=f \mu$. Then ν is absolutely continous with respect to μ. Since $\lambda\left(N^{c}\right)=0$ and $\mu(N)=0$,
we see that $\lambda \perp \mu$. To see that $m=\nu+\lambda$, note that $f g=1$ on N^{c}, while $f g=0$ on N, so for any Borel set E,

$$
m(E)=m\left(E \cap N^{c}\right)+m(E \cap N)=\int_{E \cap N^{c}} f g d m+\lambda(E)=\int_{E} f g d m+\lambda(E)
$$

We showed in a homework problem that $\int_{E} f g d m=\int_{E} f d \mu=\nu(E)$. So $m(E)=\nu(E)+\lambda(E)$.
5. We take our measurable space to be \mathbb{N} with the σ-algebra of all subsets of \mathbb{N}. We define a measure by

$$
\mu(E)=\sum_{k \in E} 2^{-k} \quad \text { for } \quad E \subset \mathbb{N}
$$

Let f_{n} and f be functions on \mathbb{N}, all of which are integrable with respect to μ. Consider the three modes of convergence:
(a) f_{n} converges to f point-wise
(b) f_{n} converges to f in measure
(c) f_{n} converges to f in L^{1} norm.

There are six possible implications $((\mathrm{a}) \Rightarrow(\mathrm{b}),(\mathrm{a}) \Rightarrow(\mathrm{c})$,etc $)$. Prove the ones that are true and give counterexamples for those that are false.

Solution: Note that for an integrable g,

$$
\int g d \mu=\sum_{n \in \mathbb{N}} g(n) 2^{-n}
$$

Also note that μ is a finite measure. We proved in class that for a finite measure, point-wise convergence a.e. implies convergence in measure. So (a) \Rightarrow (b).
Let f_{n} be the function that is 2^{n} at $k=n$ and is 0 everwhere else. Then $\int f_{n} d \mu=1$. But $f_{n} \rightarrow 0$ both point wise and in measure. This shows (a) does not imply (c) and (b) does not imply (c).

We claim (c) \Rightarrow (a). Fix a k. Then

$$
\left|f_{n}(k)-f(k)\right| \leq 2^{k} \int\left|f_{n}-f\right| d \mu
$$

We have shown $(\mathrm{c}) \Rightarrow(\mathrm{a})$ and $(\mathrm{a}) \Rightarrow(\mathrm{b})$, so $(\mathrm{c}) \Rightarrow(\mathrm{b})$. Note that we also know that (c) implies (b) since convergence in L^{1} always implies convergence in measure.
Finally we show (b) implies (a). Fix a $k \in \mathbb{N}$. Let $\epsilon>0$. Then the convergence in measure means that $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)$ goes to 0 as $n \rightarrow \infty$. So there is N such that $n \geq N$ implies it is less than 2^{-k}. But $\mu(k)=2^{-k}$, so k cannot be in $\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}$ for $n \geq N$. So $\left|f_{n}(k)-f(k)\right|<\epsilon$ for $n \geq N$.

