Math 523a - Homework 2

- 1. (problem 4, p. 14 in Folland). Let \mathcal{A} be an algebra. We say \mathcal{A} is closed under increasing countable unions if for every sequence $E_n \in \mathcal{A}$ with $E_n \subset E_{n+1}$ for $n = 1, 2, \cdots$, we have $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$. Prove that \mathcal{A} is a σ -algebra if and only if it is closed under countable increasing unions.
- 2. (problem 5, p. 14 in Folland). For any collection \mathcal{E} of subsets of X, let $\mathcal{M}(\mathcal{E})$ denote the σ -algebra generated by \mathcal{E} . Prove that

$$\mathcal{M}(\mathcal{E}) = \bigcup_{\mathcal{F}} \mathcal{M}(\mathcal{F})$$

where the union is over all countable subsets \mathcal{F} of \mathcal{E} .

- 3. Prove that the σ -algebra of Borel sets in \mathbb{R}^2 is generated by the collection of open balls in \mathbb{R}^2 .
- 4. Let (X, \mathcal{M}, μ) be a measure space and $E_n \in \mathcal{M}$ for $n = 1, 2, \cdots$. Prove that

$$\sum_{n=1}^{\infty} \mu(E_n) < \infty \quad \Rightarrow \quad \mu(\limsup E_n) = 0$$

Recall that $\limsup E_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$.

- 5. (problem 11, p. 27 in Folland) Let (X, \mathcal{M}, μ) be a **finite** measure space.
 - (a) Prove that if $E, F \in \mathcal{M}$ and $\mu(E\Delta F) = 0$ then $\mu(E) = \mu(F)$.
 - (b) Define $E \sim F$ if $\mu(E\Delta F) = 0$. Prove that \sim is an equivalence relation.
 - (c) Prove that $\rho(E, F) = \mu(E\Delta F) = 0$ defines a metric on the set of equivalence classes in \mathcal{M} .

6. Let (X, \mathcal{M}, μ) be a measure space. We say that it is *complete* if for every $N \in \mathcal{M}$ such that $\mu(N) = 0$, every subset of N is in \mathcal{M} (and so has measure 0). If the measure space is not complete, there is a natural way to "complete it." Define

$$\mathcal{N} = \{ N \in \mathcal{M} : \nu(N) = 0 \}$$

$$\overline{\mathcal{M}} = \{ E \cup F : E \in \mathcal{M} \text{ and } F \subset N \text{ for some } N \in \mathcal{N} \}$$

Prove that $\overline{\mathcal{M}}$ is a σ -algebra and there is a unique extension of μ to a complete measure on $\overline{\mathcal{M}}$.