Math 523a - Homework 3 - selected solutions

2. Problem 19, p. 32 in Folland

First suppose E is measurable. Then $\mu^*(E) = \mu(E)$. Since $\mu(X) < \infty$,

$$\mu_*(E) = \mu(X) - \mu^*(E^c) = \mu(X) - \mu(E^c) = \mu(X \setminus E^c) = \mu(E)$$

So $\mu_*(E) = \mu^*(E)$.

Now suppose $\mu_*(E) = \mu^*(E)$. By part (a) of previous problem we can find $A_n \in \mathcal{A}_{\sigma}$ with $E \subset A_n$ and $\mu(A_n) \leq \mu^*(E) + 1/n$. Let $A = \bigcap_n A_n$. Note that A is measurable. Then $E \subset A$ and $\mu^*(E) = \mu(A)$. Similarly, there is a measurable set B with $E^c \subset B$ and $\mu^*(E^c) = \mu(B)$. Now

$$\mu(B^c) = \mu(X) - \mu(B) = \mu(X) - \mu(E^c) = \mu_*(E) = \mu^*(E) = \mu(A)$$

We have $B^c \subset E \subset A$, so $\mu(A \setminus B^c) = \mu(A) - \mu(B^c) = 0$. Since the measure is complete, every subset of $A \setminus B^c$ is measurable. In particular, $E \setminus B^c$ is measurable. Since $E = B^c \cup (E \setminus B^c)$, this proves E is measurable.

8. Problem 31, p. 40 in Folland: By the previous problem there is a interval I such that $m(I \cap E) \geq \frac{3}{4}m(I)$. Let $F = E \cap I$. Since $(F - F) \subset (E - E)$, it suffice to show F - F contains an interval about 0. Note that $F \subset I$ and $m(F) \geq \frac{3}{4}m(I)$. Thus $m(I \setminus F) = m(I) - m(F) \leq \frac{1}{4}m(I)$.

First we claim that if $F \cap (F+x) \neq \emptyset$, then $x \in F - F$. Let $y \in F \cap (F+x)$. Then $y \in F$ and there is a $z \in F$ such that y = z + x. So x = y - z, proving that $x \in F - F$.

Next we claim that if $|x| < \frac{1}{2}m(I)$, then $F \cap (F + x) \neq \emptyset$. (This will complete the proof.) First note that the condition on x implies that

$$m(I \cap (I + x)) = m(I) - |x| > \frac{1}{2}m(I).$$

Now some set theory:

$$I \cap (I+x) = [F \cap (I+x)] \cup [(I \setminus F) \cap (I+x)]$$

=
$$[F \cap (F+x)] \cup [F \cap ((I \setminus F)+x)] \cup [(I \setminus F) \cap (I+x)]$$

We have

$$m(F \cap ((I \setminus F) + x)) \le m((I \setminus F) + x)) = m(I \setminus F) \le \frac{1}{4}m(I)$$

and

$$m((I \setminus F) \cap (I + x)) \le m(I \setminus F) \le \frac{1}{4}m(I)$$

 So

$$\frac{1}{2}m(I) < m(I \cap (I+x)) \le m(F \cap (F+x)) + \frac{1}{2}m(I)$$

Thus $m(F \cap (F + x)) > 0$ which of course implies $F \cap (F + x) \neq \emptyset$.