Math 523a - Homework 3-selected solutions

2. Problem 19, p. 32 in Folland

First suppose E is measurable. Then $\mu^{*}(E)=\mu(E)$. Since $\mu(X)<\infty$,

$$
\mu_{*}(E)=\mu(X)-\mu^{*}\left(E^{c}\right)=\mu(X)-\mu\left(E^{c}\right)=\mu\left(X \backslash E^{c}\right)=\mu(E)
$$

So $\mu_{*}(E)=\mu^{*}(E)$.
Now suppose $\mu_{*}(E)=\mu^{*}(E)$. By part (a) of previous problem we can find $A_{n} \in \mathcal{A}_{\sigma}$ with $E \subset A_{n}$ and $\mu\left(A_{n}\right) \leq \mu^{*}(E)+1 / n$. Let $A=\cap_{n} A_{n}$. Note that A is measurable. Then $E \subset A$ and $\mu^{*}(E)=\mu(A)$. Similarly, there is a measurable set B with $E^{c} \subset B$ and $\mu^{*}\left(E^{c}\right)=\mu(B)$. Now

$$
\mu\left(B^{c}\right)=\mu(X)-\mu(B)=\mu(X)-\mu\left(E^{c}\right)=\mu_{*}(E)=\mu^{*}(E)=\mu(A)
$$

We have $B^{c} \subset E \subset A$, so $\mu\left(A \backslash B^{c}\right)=\mu(A)-\mu\left(B^{c}\right)=0$. Since the measure is complete, every subset of $A \backslash B^{c}$ is measurable. In particular, $E \backslash B^{c}$ is measurable. Since $E=B^{c} \cup\left(E \backslash B^{c}\right)$, this proves E is measurable.
8. Problem 31, p. 40 in Folland: By the previous problem there is a interval I such that $m(I \cap E) \geq \frac{3}{4} m(I)$. Let $F=E \cap I$. Since $(F-F) \subset$ $(E-E)$, it suffice to show $F-F$ contains an interval about 0 . Note that $F \subset I$ and $m(F) \geq \frac{3}{4} m(I)$. Thus $m(I \backslash F)=m(I)-m(F) \leq \frac{1}{4} m(I)$.

First we claim that if $F \cap(F+x) \neq \emptyset$, then $x \in F-F$. Let $y \in F \cap(F+x)$. Then $y \in F$ and there is a $z \in F$ such that $y=z+x$. So $x=y-z$, proving that $x \in F-F$.

Next we claim that if $|x|<\frac{1}{2} m(I)$, then $F \cap(F+x) \neq \emptyset$. (This will complete the proof.) First note that the condition on x implies that

$$
m(I \cap(I+x))=m(I)-|x|>\frac{1}{2} m(I) .
$$

Now some set theory:

$$
\begin{aligned}
I \cap(I+x) & =[F \cap(I+x)] \cup[(I \backslash F) \cap(I+x)] \\
& =[F \cap(F+x)] \cup[F \cap((I \backslash F)+x)] \cup[(I \backslash F) \cap(I+x)]
\end{aligned}
$$

We have

$$
m(F \cap((I \backslash F)+x)) \leq m((I \backslash F)+x))=m(I \backslash F) \leq \frac{1}{4} m(I)
$$

and

$$
m((I \backslash F) \cap(I+x)) \leq m(I \backslash F) \leq \frac{1}{4} m(I)
$$

So

$$
\frac{1}{2} m(I)<m(I \cap(I+x)) \leq m(F \cap(F+x))+\frac{1}{2} m(I)
$$

Thus $m(F \cap(F+x))>0$ which of course implies $F \cap(F+x) \neq \emptyset$.

