Math 523a - Homework 4

1. Prove proposition 2.11 on p. 47 of the book. NB: The definition I gave in class of a.e. was not quite right. We say that some property which depends on x holds a.e., if there is a measurable set E with measure zero such that the property holds for all $x \notin E$. This is not the same as saying the set of x for which the property does not hold has measure zero, since the set where the property fails may not be a measurable set.
2. Let (X, \mathcal{M}) be a measurable space. Let $f: X \rightarrow \mathbb{R}$ be a non-negative, measurable function. Define a subset of $X \times \mathbb{R}$ by

$$
E=\{(x, t): f(x) \leq t\}
$$

We use the product σ-algebra on $X \times \mathbb{R}$, i.e., $\mathcal{M} \otimes \mathcal{B}$ where \mathcal{B} is the Borel σ-field in \mathbb{R}. Prove that E is in $\mathcal{M} \otimes \mathcal{B}$.
3. (Folland, problem 14, p 52). Let $f \geq 0$ be integrable on (X, \mathcal{M}). Define λ on \mathcal{M} by

$$
\lambda(E)=\int_{E} f d \mu, \quad E \in \mathcal{M}
$$

Prove λ is a measure on (X, \mathcal{M}) and for any integrable non-negative function g,

$$
\int g d \lambda=\int f g d \mu
$$

Hint: First prove it for simple f.
4. (Folland, problem 20, p 59) If f_{n}, g_{n}, f, g are non-negative integrable functions such that $f_{n} \rightarrow f$ a.e., $g_{n} \rightarrow g$ a.e., $\left|f_{n}\right| \leq g_{n}$ a.e., and $\lim _{n \rightarrow \infty} \int g_{n} d \mu=\int g d \mu$. Prove that $\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu$.
5. (Folland, problem 21, p 59) Suppose f_{n} and f are integrable and $f_{n} \rightarrow f$ a.e. Prove $\int\left|f_{n}-f\right| d \mu \rightarrow 0$ if and only if $\int\left|f_{n}\right| d \mu \rightarrow \int|f| d \mu$.
6. Let m be Lebesgue measure on \mathbb{R}. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be integrable. Define

$$
F(x)=\int_{-\infty}^{x} f(t) d m(t)
$$

(a) Prove that $F(x)$ is continuous.
(b) Prove that $F(x)$ is uniformly continuous.
7. (Folland, problem 25, p 59) Let $f(x)=x^{-1 / 2} \chi_{[0,1]}(x)$ on \mathbb{R}. Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be the rationals in \mathbb{R}. Define

$$
g(x)=\sum_{n=1}^{\infty} 2^{-n} f\left(x-r_{n}\right)
$$

(a) Prove g is integrable.
(b) Prove g is discontinuous at every point and unbounded on every interval, and this is true for any function h such that $g=h$ almost everywhere.
(c) Prove that $g^{2}<\infty$ a.e., but g^{2} is not integrable.
8. (Folland, problem 28 a, p 59) Compute the following limit and rigorously justify your computation.

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left[1+\frac{x}{n}\right]^{-n} \sin \left(\frac{x}{n}\right) d x
$$

9. For what value of α is the following limit finite and non-zero? Compute, with justification, the value of the limit for this choice of α.

$$
\lim _{n \rightarrow \infty} n^{\alpha} \int_{0}^{\infty} \frac{\sin (x)}{\left(1+x^{2}\right)^{n}} d x
$$

