Math 523a - Midterm - In class part

- 1. Let (X, \mathcal{M}, μ) be a measure space. Let $f \in L^1(X, \mathcal{M}, \mu)$
 - (a) Show that if there is a constant $\epsilon > 0$ such that $f \ge \epsilon$ a.e., then $\mu(X) < \infty$.
 - (b) Show that if f > 0 a.e., then μ is σ -finite. (Recall that σ -finite means that there is a countable collection of measurable sets X_n such that $X = \bigcup_{n=1}^{\infty} X_n$ and $\mu(X_n) < \infty$.)
- 2. Let (X, \mathcal{M}, μ) be a measure space and $f \in L^1(X, \mathcal{M}, \mu)$. Find

$$\lim_{n \to \infty} \int f(x) \, \exp(-n|f(x) - 1|) \, d\mu$$

You should prove your result.

3. Let μ be a finite Borel measure on \mathbb{R}^2 . Define a function on \mathbb{R} by

$$G(t) = \mu(\{(x, y) : x + y > t\})$$

Prove G(t) is right continuous.