Math 523a - Midterm - Take home part solutions

1. Recall that for two sets E, F, we define $E \Delta F=(E \backslash F) \cup(F \backslash E)$. And for a subset E of \mathbb{R} we define $E+x=\{y+x: y \in E\}$. Let m be Lebesgue measure on the real line. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $m(E)<\infty$. Find the limit

$$
\lim _{x \rightarrow \infty} m(E \Delta(E+x))
$$

You should prove your answer.
Solution We will prove that the limit is $2 m(E)$. We start by observing that

$$
\begin{aligned}
m(E \Delta(E+x)) & \leq m(E \backslash(E+x))+m((E+x) \backslash E) \\
& \leq m(E)+m(E+x)=2 m(E)
\end{aligned}
$$

since m is translation invariant. Thus

$$
\limsup _{x \rightarrow \infty} m(E \Delta(E+x)) \leq 2 m(E)
$$

Now let $\epsilon>0$. By the regularity of m and the fact that $m(E)<\infty$, there is a compact set $F \subset E$ with $m(F) \geq m(E)-\epsilon$. So $\mu(E \backslash F) \leq \epsilon$. Now

$$
(E \backslash(E+x)) \cup((E+x) \backslash E) \supset(F \backslash(E+x)) \cup((F+x) \backslash E)
$$

Since F is compact it is bounded. So F and $F+x$ are disjoint for large enough x. So $F \backslash(E+x)$ and $(F+x) \backslash E$ are disjoint for large enough x. So

$$
\begin{align*}
& m(E \Delta(E+x)) \geq m(F \backslash(E+x))+m((F+x) \backslash E) \\
= & m(F)-m(F \cap(E+x))+m(F+x)-m((F+x) \cap E) \tag{1}
\end{align*}
$$

Note that $m(F)+m(F+x)=2 m(F) \geq 2 m(E)-2 \epsilon$. Since F is bounded we can find M so that $F \subset[M,-M]$. Then $F+x \subset[M+x,-M+x]$. So

$$
m((F+x) \cap E) \leq m([M+x,-M+x] \cap E) \leq m([M+x, \infty) \cap E)
$$

If x_{n} is any sequence increasing to ∞, then the sets $\left[M+x_{n}, \infty\right) \cap E$ are a decreasing sequence of sets whose intersection is empty. Since $m(E)<\infty$ we can conclude from continuity of the measure m that $m\left(\left[M+x_{n}, \infty\right) \cap E\right) \rightarrow 0$. And so $\lim _{x \rightarrow \infty} m((F+x) \cap E)=0$. By translation invariance, $m(F \cap(E+x))=m((F-x) \cap E)$. An argument similar to the preceeding shows this also goes to zero as $x \rightarrow \infty$. Thus taking the liminf of eq. (1) we have

$$
\liminf _{n \rightarrow \infty} m(E \Delta(E+x)) \geq 2 m(E)-2 \epsilon
$$

This is true for all $\epsilon>0$, so the liminf must be $\geq 2 m(E)$ Combining all this

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} m(E \Delta(E+x)) & \leq 2 m(E) \leq \liminf _{n \rightarrow \infty} m(E \Delta(E+x)) \\
& \leq \limsup _{n \rightarrow \infty} m(E \Delta(E+x))
\end{aligned}
$$

Thus the liminf and limsup are equal and the limit is $2 m(E)$.
2. Let (X, \mathcal{M}) be a measurable space, and (Y, d) a metric space. Equip Y with the Borel σ-algebra. Let $f_{n}: X \rightarrow Y$ be measurable. Let $E \subset X$ be the set of x such that $f_{n}(x)$ is a Cauchy sequence in (Y, d). Prove that E is measurable. (You may not assume that Y is a complete metric space.)

Solution $f_{n}(x)$ is Cauchy if $\forall \epsilon>0$ there exist a positive integer N such that $n, m \geq N \Rightarrow d\left(f_{n}(x), f_{m}(x)\right)<\epsilon$. If this hold for $\epsilon=1 / k$ for all positive integers k, then it holds for all $\epsilon>0$. So

$$
E=\bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \bigcap_{m=N}^{\infty}\left\{x: d\left(f_{n}(x), f_{m}(x)\right)<\frac{1}{k}\right\}
$$

Since countable unions and countable intersections of measurable sets are measurable, it suffices to show $\left\{x: d\left(f_{n}(x), f_{m}(x)\right)<\epsilon\right\}$ is measurable for all n, m. Fix n, m and look at the function $\phi(x)=d\left(f_{n}(x), f_{m}(x)\right)$ from X to the reals. The set in question is $\phi^{-1}([0, \epsilon))$. So if we can show ϕ is measurable we are done. We can write $\phi=G \circ F$ where $F: X \rightarrow Y \times Y$ by $F(x)=\left(f_{n}(x), f_{m}(x)\right)$ and $G: Y \times Y \rightarrow \mathbb{R}$ by $G(y, z)=d(y, z)$. Let \mathcal{B}_{Y} be the Borel sets in Y. By a theorem
from class F is measurable from (X, \mathcal{M}) to $\left(Y \times Y, \mathcal{B}_{Y} \otimes \mathcal{B}_{Y}\right)$ if (and only if) its component functions $f_{n}(x)$ and $f_{m}(x)$ are measurable. So F is measurable in this sense. G is continuous if we use the product metric on $Y \times Y$, and so is measurable if we use the Borel sets $\mathcal{B}_{Y \times Y}$ in $Y \times Y$ that come from the product metric. Since Y is separable, $\mathcal{B}_{Y \times Y}=\mathcal{B}_{Y} \otimes \mathcal{B}_{Y}$. So ϕ is the composition of two measurable functions and so is measurable.
3. Let (X, \mathcal{M}, μ) be a measure space. Let f be a non-negative function in $L^{1}(X, \mathcal{M}, \mu)$ such that $\mu(\{x: f(x) \leq 1\})<\infty$.
(a) Show that for positive integers $n, f^{1 / n}$ is in L^{1}.
(b) Find

$$
\lim _{n \rightarrow \infty} \int f^{1 / n} d \mu
$$

You should prove your answer.

Solution (a) If $a>1$ then $a^{1 / n} \leq a$. So when $f(x)>1$ we can bound $f(x)^{1 / n}$ by $f(x)$. When $f(x) \leq 1$ we just bound it by 1 . So if we let $g(x)=1+f(x)$, then $f^{1 / n}(x) \leq g(x)$. Since $\mu(X)<\infty, 1$ is in L^{1}. So g is in L^{1}.
(b) We want to use the dominated convergence theorem. When $f(x)>$ $0, f(x)^{1 / n} \rightarrow 1$. And when $f(x)=0, f(x)^{1 / n}=0$. So the sequence $f^{1 / n}$ converges pointwise to χ_{E} where $E=\{x: f(x)>0\}$. The function g in the previous part provides a dominating function. So we can apply the dominated convergence theorem to conclude

$$
\lim _{n \rightarrow \infty} \int f^{1 / n} d \mu=\int \chi_{E} d \mu=\mu(E)
$$

4. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty$. For real-valued measurable functions f, g on X, define

$$
\rho(f, g)=\int \frac{|f-g|}{1+|f-g|} d \mu
$$

Prove that $f_{n} \rightarrow f$ in measure if and only if $\rho\left(f_{n}, f\right) \rightarrow 0$.

Solution Note that for $a \geq 0, a /(1+a)<1$. So the integrand in $\rho(f, g)$ is pointwise bounded by 1 . For $\epsilon>0$, define

$$
E_{\epsilon, n}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}
$$

So f_{n} converges to f in measure if and only if for all $\epsilon>0$ we have $\lim _{n \rightarrow \infty} \mu\left(E_{\epsilon, n}\right)=0$.
Now suppose f_{n} converges to f in measure. Then

$$
\begin{aligned}
\rho\left(f_{n}, f\right) & =\int_{E_{\epsilon, n}^{c}} \frac{|f-g|}{1+|f-g|} d \mu+\int_{E_{\epsilon, n}} \frac{|f-g|}{1+|f-g|} d \mu \\
& \leq \int_{E_{\epsilon, n}^{c}} \epsilon d \mu+\int_{E_{\epsilon, n}} 1 d \mu \\
& \leq \epsilon \mu(X)+\mu\left(E_{\epsilon, n}\right)
\end{aligned}
$$

Taking limsup of both sides, we conclude $\limsup _{n} \rho\left(f_{n}, f\right) \leq \epsilon \mu(X)$. This holds for all $\epsilon>0$, so $\limsup _{n} \rho\left(f_{n}, f\right)=0$. Since $\rho\left(f_{n}, f\right) \geq 0$, this implies $\lim _{n} \rho\left(f_{n}, f\right)=0$.
Now suppose $\lim _{n} \rho\left(f_{n}, f\right)=0$. Note that $x \rightarrow x /(1+x)$ is an increasing function on $[0, \infty)$. So $y \geq \epsilon$ if and only if $y /(1+y) \geq \epsilon /(1+\epsilon)$. So on $E_{\epsilon, n},|f-g| /(1+|f-g|) \geq \epsilon /(1+\epsilon)$. So

$$
\rho\left(f_{n}, f\right) \geq \int_{E_{\epsilon, n}} \frac{|f-g|}{1+|f-g|} d \mu \geq \int_{E_{\epsilon, n}} \frac{\epsilon}{1+\epsilon} d \mu=\frac{\epsilon}{1+\epsilon} \mu\left(E_{\epsilon, n}\right)
$$

So $\lim _{n} \mu\left(E_{\epsilon, n}\right)=0$, which says that f_{n} converges to f in measure.
5 . Let $C[0,1]$ be the set of real-valued continuous functions on $[0,1]$. Define a metric on this set by

$$
\rho(f, g)=\int_{[0,1]}|f-g| d m
$$

where m is Lebesgue measure on $[0,1]$. Let

$$
A=\{f \in C[0,1]:|f(x)| \leq 1 \forall x\}
$$

Find the interior of A. You should prove your answer.

Solution Given $\epsilon>0$ let g_{ϵ} be a continuous function with $g(1 / 2)=3$ and $\int|g| d m<\epsilon$. If $f \in A$, then a ball of radius ϵ centered at f will contain $f+g$. But $|(f+g)(1 / 2)| \geq|g(1 / 2)|-|f(1 / 2)| \geq 3-1=2$. So $f+g \notin A$. So there is no open ball centered at f which is contained in A. So the interior of A is empty.

