
Math 523a - Midterm - Take home part solutions

1. Recall that for two sets E,F , we define E∆F = (E \ F ) ∪ (F \ E).
And for a subset E of R we define E + x = {y + x : y ∈ E}. Let
m be Lebesgue measure on the real line. Let E ⊂ R be a Lebesgue
measurable set with m(E) < ∞. Find the limit

lim
x→∞

m(E∆(E + x))

You should prove your answer.

Solution We will prove that the limit is 2m(E). We start by observing
that

m(E∆(E + x)) ≤ m(E \ (E + x)) +m((E + x) \ E)

≤ m(E) +m(E + x) = 2m(E)

since m is translation invariant. Thus

lim sup
x→∞

m(E∆(E + x)) ≤ 2m(E)

Now let ǫ > 0. By the regularity of m and the fact that m(E) < ∞,
there is a compact set F ⊂ E with m(F ) ≥ m(E)− ǫ. So µ(E \F ) ≤ ǫ.
Now

(E \ (E + x)) ∪ ((E + x) \ E) ⊃ (F \ (E + x)) ∪ ((F + x) \ E)

Since F is compact it is bounded. So F and F +x are disjoint for large
enough x. So F \ (E + x) and (F + x) \E are disjoint for large enough
x. So

m(E∆(E + x)) ≥ m(F \ (E + x)) +m((F + x) \ E)

= m(F )−m(F ∩ (E + x)) +m(F + x)−m((F + x) ∩ E) (1)

Note thatm(F )+m(F+x) = 2m(F ) ≥ 2m(E)−2ǫ. Since F is bounded
we can find M so that F ⊂ [M,−M ]. Then F +x ⊂ [M +x,−M +x].
So

m((F + x) ∩ E) ≤ m([M + x,−M + x] ∩ E) ≤ m([M + x,∞) ∩ E)
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If xn is any sequence increasing to ∞, then the sets [M + xn,∞) ∩ E
are a decreasing sequence of sets whose intersection is empty. Since
m(E) < ∞ we can conclude from continuity of the measure m that
m([M + xn,∞) ∩ E) → 0. And so limx→∞ m((F + x) ∩ E) = 0. By
translation invariance, m(F ∩(E+x)) = m((F −x)∩E). An argument
similar to the preceeding shows this also goes to zero as x → ∞. Thus
taking the lim inf of eq. (1) we have

lim inf
n→∞

m(E∆(E + x)) ≥ 2m(E)− 2ǫ

This is true for all ǫ > 0, so the lim inf must be ≥ 2m(E) Combining
all this

lim sup
n→∞

m(E∆(E + x)) ≤ 2m(E) ≤ lim inf
n→∞

m(E∆(E + x))

≤ lim sup
n→∞

m(E∆(E + x))

Thus the lim inf and lim sup are equal and the limit is 2m(E).

2. Let (X,M) be a measurable space, and (Y, d) a metric space. Equip
Y with the Borel σ-algebra. Let fn : X → Y be measurable. Let
E ⊂ X be the set of x such that fn(x) is a Cauchy sequence in (Y, d).
Prove that E is measurable. (You may not assume that Y is a complete
metric space.)

Solution fn(x) is Cauchy if ∀ǫ > 0 there exist a positive integer N
such that n,m ≥ N ⇒ d(fn(x), fm(x)) < ǫ. If this hold for ǫ = 1/k for
all positive integers k, then it holds for all ǫ > 0. So

E =
∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

∞⋂
m=N

{x : d(fn(x), fm(x)) <
1

k
}

Since countable unions and countable intersections of measurable sets
are measurable, it suffices to show {x : d(fn(x), fm(x)) < ǫ} is measur-
able for all n,m. Fix n,m and look at the function φ(x) = d(fn(x), fm(x))
from X to the reals. The set in question is φ−1([0, ǫ)). So if we can
show φ is measurable we are done. We can write φ = G ◦ F where
F : X → Y × Y by F (x) = (fn(x), fm(x)) and G : Y × Y → R

by G(y, z) = d(y, z). Let BY be the Borel sets in Y . By a theorem
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from class F is measurable from (X,M) to (Y × Y,BY ⊗ BY ) if (and
only if) its component functions fn(x) and fm(x) are measurable. So
F is measurable in this sense. G is continuous if we use the product
metric on Y × Y , and so is measurable if we use the Borel sets BY×Y

in Y × Y that come from the product metric. Since Y is separable,
BY×Y = BY ⊗BY . So φ is the composition of two measurable functions
and so is measurable.

3. Let (X,M, µ) be a measure space. Let f be a non-negative function
in L1(X,M, µ) such that µ({x : f(x) ≤ 1}) < ∞.

(a) Show that for positive integers n, f 1/n is in L1.

(b) Find

lim
n→∞

∫
f 1/n dµ

You should prove your answer.

Solution (a) If a > 1 then a1/n ≤ a. So when f(x) > 1 we can bound
f(x)1/n by f(x). When f(x) ≤ 1 we just bound it by 1. So if we let
g(x) = 1 + f(x), then f 1/n(x) ≤ g(x). Since µ(X) < ∞, 1 is in L1. So
g is in L1.

(b) We want to use the dominated convergence theorem. When f(x) >
0, f(x)1/n → 1. And when f(x) = 0, f(x)1/n = 0. So the sequence f 1/n

converges pointwise to χE where E = {x : f(x) > 0}. The function g
in the previous part provides a dominating function. So we can apply
the dominated convergence theorem to conclude

lim
n→∞

∫
f 1/n dµ =

∫
χEdµ = µ(E)

4. Let (X,M, µ) be a measure space with µ(X) < ∞. For real-valued
measurable functions f, g on X, define

ρ(f, g) =

∫
|f − g|

1 + |f − g|
dµ

Prove that fn → f in measure if and only if ρ(fn, f) → 0.
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Solution Note that for a ≥ 0, a/(1 + a) < 1. So the integrand in
ρ(f, g) is pointwise bounded by 1. For ǫ > 0, define

Eǫ,n = {x : |fn(x)− f(x)| ≥ ǫ}

So fn converges to f in measure if and only if for all ǫ > 0 we have
limn→∞ µ(Eǫ,n) = 0.

Now suppose fn converges to f in measure. Then

ρ(fn, f) =

∫
Ec

ǫ,n

|f − g|

1 + |f − g|
dµ+

∫
Eǫ,n

|f − g|

1 + |f − g|
dµ

≤

∫
Ec

ǫ,n

ǫdµ+

∫
Eǫ,n

1 dµ

≤ ǫµ(X) + µ(Eǫ,n)

Taking lim sup of both sides, we conclude lim supn ρ(fn, f) ≤ ǫµ(X).
This holds for all ǫ > 0, so lim supn ρ(fn, f) = 0. Since ρ(fn, f) ≥ 0,
this implies limn ρ(fn, f) = 0.

Now suppose limn ρ(fn, f) = 0. Note that x → x/(1+x) is an increasing
function on [0,∞). So y ≥ ǫ if and only if y/(1 + y) ≥ ǫ/(1 + ǫ). So on
Eǫ,n, |f − g|/(1 + |f − g|) ≥ ǫ/(1 + ǫ). So

ρ(fn, f) ≥

∫
Eǫ,n

|f − g|

1 + |f − g|
dµ ≥

∫
Eǫ,n

ǫ

1 + ǫ
dµ =

ǫ

1 + ǫ
µ(Eǫ,n)

So limn µ(Eǫ,n) = 0, which says that fn converges to f in measure.

5. Let C[0, 1] be the set of real-valued continuous functions on [0, 1]. De-
fine a metric on this set by

ρ(f, g) =

∫
[0,1]

|f − g| dm

where m is Lebesgue measure on [0, 1]. Let

A = {f ∈ C[0, 1] : |f(x)| ≤ 1 ∀x}

Find the interior of A. You should prove your answer.
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Solution Given ǫ > 0 let gǫ be a continuous function with g(1/2) = 3
and

∫
|g| dm < ǫ. If f ∈ A, then a ball of radius ǫ centered at f will

contain f + g. But |(f + g)(1/2)| ≥ |g(1/2)| − |f(1/2)| ≥ 3− 1 = 2. So
f + g /∈ A. So there is no open ball centered at f which is contained in
A. So the interior of A is empty.
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