Math 523a - Midterm - Take home part solutions

1. Recall that for two sets E, F, we define $E\Delta F = (E \setminus F) \cup (F \setminus E)$. And for a subset E of \mathbb{R} we define $E + x = \{y + x : y \in E\}$. Let m be Lebesgue measure on the real line. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $m(E) < \infty$. Find the limit

$$\lim_{x \to \infty} m(E\Delta(E+x))$$

You should prove your answer.

Solution We will prove that the limit is 2m(E). We start by observing that

$$m(E\Delta(E+x)) \leq m(E \setminus (E+x)) + m((E+x) \setminus E)$$

$$\leq m(E) + m(E+x) = 2m(E)$$

since m is translation invariant. Thus

$$\limsup_{x \to \infty} m(E\Delta(E+x)) \le 2m(E)$$

Now let $\epsilon > 0$. By the regularity of m and the fact that $m(E) < \infty$, there is a compact set $F \subset E$ with $m(F) \ge m(E) - \epsilon$. So $\mu(E \setminus F) \le \epsilon$. Now

$$(E \setminus (E+x)) \cup ((E+x) \setminus E) \supset (F \setminus (E+x)) \cup ((F+x) \setminus E)$$

Since F is compact it is bounded. So F and F + x are disjoint for large enough x. So $F \setminus (E + x)$ and $(F + x) \setminus E$ are disjoint for large enough x. So

$$m(E\Delta(E+x)) \ge m(F \setminus (E+x)) + m((F+x) \setminus E)$$

= $m(F) - m(F \cap (E+x)) + m(F+x) - m((F+x) \cap E)$ (1)

Note that $m(F)+m(F+x) = 2m(F) \ge 2m(E)-2\epsilon$. Since F is bounded we can find M so that $F \subset [M, -M]$. Then $F + x \subset [M + x, -M + x]$. So

$$m((F+x) \cap E) \le m([M+x, -M+x] \cap E) \le m([M+x, \infty) \cap E)$$

If x_n is any sequence increasing to ∞ , then the sets $[M + x_n, \infty) \cap E$ are a decreasing sequence of sets whose intersection is empty. Since $m(E) < \infty$ we can conclude from continuity of the measure m that $m([M + x_n, \infty) \cap E) \to 0$. And so $\lim_{x\to\infty} m((F + x) \cap E) = 0$. By translation invariance, $m(F \cap (E+x)) = m((F-x) \cap E)$. An argument similar to the preceeding shows this also goes to zero as $x \to \infty$. Thus taking the lim inf of eq. (1) we have

$$\liminf_{n \to \infty} m(E\Delta(E+x)) \ge 2m(E) - 2\epsilon$$

This is true for all $\epsilon > 0$, so the limit must be $\geq 2m(E)$ Combining all this

$$\limsup_{n \to \infty} m(E\Delta(E+x)) \leq 2m(E) \leq \liminf_{n \to \infty} m(E\Delta(E+x))$$
$$\leq \limsup_{n \to \infty} m(E\Delta(E+x))$$

Thus the limit and lim sup are equal and the limit is 2m(E).

2. Let (X, \mathcal{M}) be a measurable space, and (Y, d) a metric space. Equip Y with the Borel σ -algebra. Let $f_n : X \to Y$ be measurable. Let $E \subset X$ be the set of x such that $f_n(x)$ is a Cauchy sequence in (Y, d). Prove that E is measurable. (You may not assume that Y is a complete metric space.)

Solution $f_n(x)$ is Cauchy if $\forall \epsilon > 0$ there exist a positive integer N such that $n, m \ge N \Rightarrow d(f_n(x), f_m(x)) < \epsilon$. If this hold for $\epsilon = 1/k$ for all positive integers k, then it holds for all $\epsilon > 0$. So

$$E = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \bigcap_{m=N}^{\infty} \{x : d(f_n(x), f_m(x)) < \frac{1}{k}\}$$

Since countable unions and countable intersections of measurable sets are measurable, it suffices to show $\{x : d(f_n(x), f_m(x)) < \epsilon\}$ is measurable for all n, m. Fix n, m and look at the function $\phi(x) = d(f_n(x), f_m(x))$ from X to the reals. The set in question is $\phi^{-1}([0, \epsilon))$. So if we can show ϕ is measurable we are done. We can write $\phi = G \circ F$ where $F : X \to Y \times Y$ by $F(x) = (f_n(x), f_m(x))$ and $G : Y \times Y \to \mathbb{R}$ by G(y, z) = d(y, z). Let \mathcal{B}_Y be the Borel sets in Y. By a theorem from class F is measurable from (X, \mathcal{M}) to $(Y \times Y, \mathcal{B}_Y \otimes \mathcal{B}_Y)$ if (and only if) its component functions $f_n(x)$ and $f_m(x)$ are measurable. So F is measurable in this sense. G is continuous if we use the product metric on $Y \times Y$, and so is measurable if we use the Borel sets $\mathcal{B}_{Y \times Y}$ in $Y \times Y$ that come from the product metric. Since Y is separable, $\mathcal{B}_{Y \times Y} = \mathcal{B}_Y \otimes \mathcal{B}_Y$. So ϕ is the composition of two measurable functions and so is measurable.

- 3. Let (X, \mathcal{M}, μ) be a measure space. Let f be a non-negative function in $L^1(X, \mathcal{M}, \mu)$ such that $\mu(\{x : f(x) \leq 1\}) < \infty$.
 - (a) Show that for positive integers $n, f^{1/n}$ is in L^1 .
 - (b) Find

$$\lim_{n \to \infty} \int f^{1/n} \, d\mu$$

You should prove your answer.

Solution (a) If a > 1 then $a^{1/n} \leq a$. So when f(x) > 1 we can bound $f(x)^{1/n}$ by f(x). When $f(x) \leq 1$ we just bound it by 1. So if we let g(x) = 1 + f(x), then $f^{1/n}(x) \leq g(x)$. Since $\mu(X) < \infty$, 1 is in L^1 . So g is in L^1 .

(b) We want to use the dominated convergence theorem. When f(x) > 0, $f(x)^{1/n} \to 1$. And when f(x) = 0, $f(x)^{1/n} = 0$. So the sequence $f^{1/n}$ converges pointwise to χ_E where $E = \{x : f(x) > 0\}$. The function g in the previous part provides a dominating function. So we can apply the dominated convergence theorem to conclude

$$\lim_{n \to \infty} \int f^{1/n} \, d\mu = \int \chi_E d\mu = \mu(E)$$

4. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. For real-valued measurable functions f, g on X, define

$$\rho(f,g) = \int \frac{|f-g|}{1+|f-g|} d\mu$$

Prove that $f_n \to f$ in measure if and only if $\rho(f_n, f) \to 0$.

Solution Note that for $a \ge 0$, a/(1+a) < 1. So the integrand in $\rho(f,g)$ is pointwise bounded by 1. For $\epsilon > 0$, define

$$E_{\epsilon,n} = \{x : |f_n(x) - f(x)| \ge \epsilon\}$$

So f_n converges to f in measure if and only if for all $\epsilon > 0$ we have $\lim_{n\to\infty} \mu(E_{\epsilon,n}) = 0$.

Now suppose f_n converges to f in measure. Then

$$\rho(f_n, f) = \int_{E_{\epsilon,n}^c} \frac{|f-g|}{1+|f-g|} d\mu + \int_{E_{\epsilon,n}} \frac{|f-g|}{1+|f-g|} d\mu \\
\leq \int_{E_{\epsilon,n}^c} \epsilon d\mu + \int_{E_{\epsilon,n}} 1 d\mu \\
\leq \epsilon \mu(X) + \mu(E_{\epsilon,n})$$

Taking lim sup of both sides, we conclude $\limsup_n \rho(f_n, f) \leq \epsilon \mu(X)$. This holds for all $\epsilon > 0$, so $\limsup_n \rho(f_n, f) = 0$. Since $\rho(f_n, f) \geq 0$, this implies $\lim_n \rho(f_n, f) = 0$.

Now suppose $\lim_{n} \rho(f_n, f) = 0$. Note that $x \to x/(1+x)$ is an increasing function on $[0, \infty)$. So $y \ge \epsilon$ if and only if $y/(1+y) \ge \epsilon/(1+\epsilon)$. So on $E_{\epsilon,n}, |f-g|/(1+|f-g|) \ge \epsilon/(1+\epsilon)$. So

$$\rho(f_n, f) \ge \int_{E_{\epsilon,n}} \frac{|f-g|}{1+|f-g|} d\mu \ge \int_{E_{\epsilon,n}} \frac{\epsilon}{1+\epsilon} d\mu = \frac{\epsilon}{1+\epsilon} \mu(E_{\epsilon,n})$$

So $\lim_{n} \mu(E_{\epsilon,n}) = 0$, which says that f_n converges to f in measure.

5. Let C[0,1] be the set of real-valued continuous functions on [0,1]. Define a metric on this set by

$$\rho(f,g) = \int_{[0,1]} |f - g| \, dm$$

where m is Lebesgue measure on [0, 1]. Let

$$A = \{ f \in C[0,1] : |f(x)| \le 1 \,\forall x \}$$

Find the interior of A. You should prove your answer.

Solution Given $\epsilon > 0$ let g_{ϵ} be a continuous function with g(1/2) = 3and $\int |g| dm < \epsilon$. If $f \in A$, then a ball of radius ϵ centered at f will contain f + g. But $|(f + g)(1/2)| \ge |g(1/2)| - |f(1/2)| \ge 3 - 1 = 2$. So $f + g \notin A$. So there is no open ball centered at f which is contained in A. So the interior of A is empty.