Math 523b - Final Exam Solutions- Spring 2013

Do four of the following five problems.

We use dx to denote Lebesgue measure.

1. Let X and Y be locally compact topological spaces. Prove that $X \times Y$ with the product topology is locally compact.

Solution: Let $(x,y) \in X \times Y$. Since X and Y are locally compact there is a compact neighborhood U of x in X and a compact neighborhood V of y in Y. So $x \in int(U)$, $y \in int(V)$. By the definition of product toplogy, $int(U) \times int(V)$ is open in $X \times Y$. So $U \times V$ is a neighborhood of (x,y) in $X \times Y$.

Since U is compact in X, U with the relative topology is a compact topological space. Likewise for V. So by Tychynoff's theorem, $U \times V$ with its product topology is compact. Some definition chasing shows that this product topology on $U \times V$ is the same as the relative topology it gets from the product topology on $X \times Y$. So $U \times V$ is compact in $X \times Y$ and so is a compact neighborhood of (x, y).

2. Let $1 . Suppose <math>f_n \in L^p([0,1], dx)$ with $||f_n||_p \le 1$ for all n. Suppose also that for all $\alpha \ge 0$

$$\lim_{n \to \infty} \int_0^1 f_n(x)e^{-\alpha x} dx = 0$$

Prove that f_n converges to 0 weakly in L^p . (You may assume all functions are real valued.)

Solution: Let q be the conjugate exponent to p. To show f_n converges weakly to 0, we must show $\int_0^1 f_n g dx$ converges to 0 for all $g \in L^q$. We are given that this is true for g of the form $e^{-\alpha x}$. Let A be the set of functions of the form $\sum_{j=1}^n c_j \exp(-\alpha_j x)$ where n is any positive integer, $c_j \in \mathbb{R}$ and $\alpha_j \geq 0$. By linearity we have the desired convergence for $g \in A$.

Since $\exp(-\alpha_1 x) \exp(-\alpha_2 x) = \exp(-(\alpha_1 + \alpha_2)x)$, A is an algebra. It contains the constant functions (take $\alpha = 0$). It contains e^{-x} which separates all point in [0, 1]. So by the Stone-Weierstrass theorem, A is

dense in C[0,1] with the sup norm. This implies it is dense in C[0,1] with respect to the L^q norm since the measure is finite. And since C[0,1] is dense in L^q , A is dense in L^q .

Now let $h \in L^q$ and let $\epsilon > 0$. Pick $g \in A$ such that $||h - g||_q < \epsilon$. Then by Holder's inequality,

$$\left| \int_{0}^{1} f_{n}gdx - \int_{0}^{1} f_{n}hdx \right| \le ||f_{n}||_{p}||g - h||_{q} \le ||g - h||_{q} < \epsilon$$

So

$$\limsup_{n \to \infty} \left| \int_0^1 f_n(x) h(x) \, dx \right| \le \epsilon$$

This holds for all $\epsilon > 0$, so the limsup is 0 and so

$$\lim_{n \to \infty} \int_0^1 f_n(x)h(x) \, dx = 0$$

3. Let M be a closed subspace of a Hilbert space H. Let F be a bounded linear functional on M. The Hahn Banach theorem says that there is an extension of F to a linear functional on all of H which has the same norm. Prove that such an extension is unique.

Solution: We recall for $y \in H$, $x \to < x, y >$ defines a bounded linear functional on H whose norm is ||y||. This gives an isometry between the dual of a Hilbert space and the Hilbert space itself. The closed subspace M is itself a Hilbert space. So we can restrict F to M and get a bounded linear functional on M. Then there is a unique $y \in M$ such that F(x) = < x, y > for $x \in M$.

Any extension of \bar{F} of F to H must be of the form $\bar{F}(x) = \langle x, z \rangle$ for some z in H. By the projection theorem z has a unique decomposition $z = z_1 + z_2$ where $z_1 \in M$ and $z_2 \in M^{\perp}$. Since it is an extension we must have $\langle x, y \rangle = \langle x, z_1 + z_2 \rangle = \langle x, z_1 \rangle$ for all $x \in M$. So $\langle x, y - z_1 \rangle = 0$ for all $x \in M$. But $y - z_1 \in M$, so $y - z_1$ must be 0, i.e., $z_1 = y$. Finally we note that the norm of the original F is ||y|| while the norm of the extension is $||z_1 + z_2|| = ||y + z_2|| = \sqrt{||y||^2 + ||z_2||^2}$ So $||z_2|| = 0$, i.e., $z_2 = 0$. Thus the only possible extension is given by z = y.

4. Let $C_0 = C_0(\mathbb{R})$ be the real-valued continuous functions on the real line that go to zero at $\pm \infty$. We use the usual sup norm. If $g \in L^1(\mathbb{R}, dx)$ is a real-valued Lebesgue integrable function, then we can define a bounded linear function ϕ_g on C_0 by

$$\phi_g(f) = \int f(x)g(x) dx$$

Let F be the set of all such linear functionals:

$$F = \{ \phi_g : g \in L^1(\mathbb{R}, dx) \}$$

Prove that F is a closed subset of C_0^* .

Solution One: The dual C_0^* is identified with the space of finite Borel measures on \mathbb{R} in the usual way. For the linear functionals ϕ_g , the measure that represent the functional is g(x)dx. The norm of ϕ_g as a linear functional is the norm of the measure which is the L^1 norm of g. So if ϕ_{g_n} converges to some bounded linear functional ϕ in C_0^* , then g_n is a Cauchy sequence in L^1 and so by the completeness of L^1 converges to some $g \in L^1$. This means that ϕ_{g_n} converges to ϕ_g in C_0 , and so F is closed.

Solution Two: Again, we identify C_0^* with the space of finite Borel measures. By the Randon-Nikodym theorem, F corresponds with the Borel measures that are absolutely continuous with respect to Lebesgue measure. The norm on C_0 corresponds to the total variation norm of the measures. So we need to show that if $||\mu_n - \mu|| \to 0$ for Borel measures μ_n and μ and $\mu_n << m$ for all n where m is Lebesgue measure, then $\mu << m$. Suppose E is a Borel set with m(E) = 0. Then $\mu_n(E) = 0$ for all n. Since

$$|\mu_n(E) - \mu(E)| = |(\mu_n - \mu)(E)| \le ||\mu_n - \mu||$$

we conclude that $\mu(E) = 0$. So $\mu \ll m$ and thus F is closed.

5. Let X_n be an independent, identically distributed sequence of random variables with $X_1 \geq 0$ a.e. and $E[X_1] = \infty$. This implies that for all c > 0,

$$\sum_{n=1}^{\infty} P(X_1 \ge cn) = \infty$$

You may assume this fact without proving it.

- (a) Prove that $P(X_n \ge c n \quad infinitely \quad often) = 1 \text{ for all } c > 0.$
- (b) Prove that for all c > 0

$$P(\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} X_j \ge c) = 1$$

(c) Prove that

$$P(\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} X_j = \infty) = 1$$

Solution:

(a) Since they are identically distributed, $P(X_1 \ge cn) = P(X_n \ge cn)$. So

$$\sum_{n=1}^{\infty} P(X_n \ge cn) = \infty$$

By the Borel Cantelli Lemma the statement in (a) holds.

(b) If ω is in the event $\{X_n \geq c n \text{ infinitely often}\}$ then there is a subsequence n_k (which depends on ω) such that $X_{n_k} \geq c n_k$. So we have for all k

$$\frac{1}{n_n} \sum_{j=1}^{n_k} X_j \ge c$$

Hence the statement in (b) holds.

(c)

$$\{\limsup_{n\to\infty} \frac{1}{n} \sum_{j=1}^{n} X_j = \infty\} = \bigcap_{N=1}^{\infty} \{\limsup_{n\to\infty} \frac{1}{n} \sum_{j=1}^{n} X_j \ge N\}$$

Each event in this countable intersection has probability one, so the intersection has probability one. (Countable union of measure zero sets is measure zero.)