
Math 523b - Final Exam Solutions- Spring 2013

Do four of the following five problems.

We use dx to denote Lebesgue measure.

1. Let X and Y be locally compact topological spaces. Prove that X ×Y

with the product topology is locally compact.

Solution: Let (x, y) ∈ X×Y . SinceX and Y are locally compact there
is a compact neighborhood U of x in X and a compact neighborhood
V of y in Y . So x ∈ int(U), y ∈ int(V ). By the definition of product
toplogy, int(U)× int(V ) is open in X×Y . So U×V is a neighborhood
of (x, y) in X × Y .

Since U is compact in X, U with the relative topology is a compact
topological space. Likewise for V . So by Tychynoff’s theorem, U × V

with its product topology is compact. Some definition chasing shows
that this product topology on U×V is the same as the relative topology
it gets from the product topology on X × Y . So U × V is compact in
X × Y and so is a compact neighborhood of (x, y).

2. Let 1 < p < ∞. Suppose fn ∈ Lp([0, 1], dx) with ||fn||p ≤ 1 for all n.
Suppose also that for all α ≥ 0

lim
n→∞

∫

1

0

fn(x)e
−αx dx = 0

Prove that fn converges to 0 weakly in Lp. (You may assume all func-
tions are real valued.)

Solution: Let q be the conjugate exponent to p. To show fn converges
weakly to 0, we must show

∫

1

0
fngdx converges to 0 for all g ∈ Lq. We

are given that this is true for g of the form e−αx. Let A be the set of
functions of the form

∑n

j=1
cj exp(−αjx) where n is any positive integer,

cj ∈ R and αj ≥ 0. By linearity we have the desired convergence for
g ∈ A.

Since exp(−α1x) exp(−α2x) = exp(−(α1 + α2)x), A is an algebra. It
contains the constant functions (take α = 0). It contains e−x which
separates all point in [0, 1]. So by the Stone-Weierstrass theorem, A is
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dense in C[0, 1] with the sup norm. This implies it is dense in C[0, 1]
with respect to the Lq norm since the measure is finite. And since
C[0, 1] is dense in Lq, A is dense in Lq.

Now let h ∈ Lq and let ǫ > 0. Pick g ∈ A such that ||h − g||q < ǫ.
Then by Holder’s inequality,

|

∫

1

0

fngdx−

∫

1

0

fnhdx| ≤ ||fn||p||g − h||q ≤ ||g − h||q < ǫ

So

lim sup
n→∞

|

∫

1

0

fn(x)h(x) dx| ≤ ǫ

This holds for all ǫ > 0, so the limsup is 0 and so

lim
n→∞

∫

1

0

fn(x)h(x) dx = 0

3. Let M be a closed subspace of a Hilbert space H. Let F be a bounded
linear functional on M . The Hahn Banach theorem says that there is
an extension of F to a linear functional on all of H which has the same
norm. Prove that such an extension is unique.

Solution: We recall for y ∈ H, x →< x, y > defines a bounded linear
functional on H whose norm is ||y||. This gives an isometry between
the dual of a Hilbert space and the Hilbert space itself. The closed
subspace M is itself a Hilbert space. So we can restrict F to M and
get a bounded linear functional on M . Then there is a unique y ∈ M

such that F (x) =< x, y > for x ∈ M .

Any extension of F̄ of F to H must be of the form F̄ (x) =< x, z > for
some z in H. By the projection theorem z has a unique decomposition
z = z1 + z2 where z1 ∈ M and z2 ∈ M⊥. Since it is an extension
we must have < x, y >=< x, z1 + z2 >=< x, z1 > for all x ∈ M . So
< x, y−z1 >= 0 for all x ∈ M . But y−z1 ∈ M , so y−z1 must be 0, i.e.,
z1 = y. Finally we note that the norm of the original F is ||y|| while
the norm of the extension is ||z1 + z2|| = ||y + z2|| =

√

||y||2 + ||z2||2

So ||z2|| = 0, i.e., z2 = 0. Thus the only possible extension is given by
z = y.
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4. Let C0 = C0(R) be the real-valued continuous functions on the real line
that go to zero at ±∞. We use the usual sup norm. If g ∈ L1(R, dx) is a
real-valued Lebesgue integrable function, then we can define a bounded
linear function φg on C0 by

φg(f) =

∫

f(x)g(x) dx

Let F be the set of all such linear functionals:

F = {φg : g ∈ L1(R, dx)}

Prove that F is a closed subset of C∗

0
.

Solution One: The dual C∗

0
is identified with the space of finite Borel

measures on R in the usual way. For the linear functionals φg, the
measure that represent the functional is g(x)dx. The norm of φg as a
linear functional is the norm of the measure which is the L1 norm of g.
So if φgn converges to some bounded linear functional φ in C∗

0
, then gn

is a Cauchy sequence in L1 and so by the completeness of L1 converges
to some g ∈ L1. This means that φgn converges to φg in C0, and so F

is closed.

Solution Two: Again, we identify C∗

0
with the space of finite Borel

measures. By the Randon-Nikodym theorem, F corresponds with the
Borel measures that are absolutely continuous with respect to Lebesgue
measure. The norm on C0 corresponds to the total variation norm of the
measures. So we need to show that if ||µn−µ|| → 0 for Borel measures
µn and µ and µn << m for all n where m is Lebesgue measure, then
µ << m. Suppose E is a Borel set with m(E) = 0. Then µn(E) = 0
for all n. Since

|µn(E)− µ(E)| = |(µn − µ)(E)| ≤ ||µn − µ||

we conclude that µ(E) = 0. So µ << m and thus F is closed.

5. Let Xn be an independent, identically distributed sequence of random
variables with X1 ≥ 0 a.e. and E[X1] = ∞. This implies that for all
c > 0,

∞
∑

n=1

P (X1 ≥ cn) = ∞
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You may assume this fact without proving it.

(a) Prove that P (Xn ≥ c n infinitely often) = 1 for all c > 0.

(b) Prove that for all c > 0

P (lim sup
n→∞

1

n

n
∑

j=1

Xj ≥ c) = 1

(c) Prove that

P (lim sup
n→∞

1

n

n
∑

j=1

Xj = ∞) = 1

Solution:

(a) Since they are identically distributed, P (X1 ≥ cn) = P (Xn ≥ cn).
So

∞
∑

n=1

P (Xn ≥ cn) = ∞

By the Borel Cantelli Lemma the statement in (a) holds.

(b) If ω is in the event {Xn ≥ c n infinitely often} then there is
a subsequence nk (which depends on ω) such that Xnk

≥ cnk. So we
have for all k

1

nn

nk
∑

j=1

Xj ≥ c

Hence the statement in (b) holds.

(c)

{lim sup
n→∞

1

n

n
∑

j=1

Xj = ∞} =
∞
⋂

N=1

{lim sup
n→∞

1

n

n
∑

j=1

Xj ≥ N}

Each event in this countable intersection has probability one, so the
intersection has probability one. (Countable union of measure zero
sets is measure zero.)
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