Math 523b - Homework 2

- 1. Problem 56, p. 135 in Folland.
- 2. Problem 60, p. 138 in Folland.
- 3. Problem 63, p. 138 in Folland.
- 4. Problem 67, p. 142 in Folland.
- 5. Problem 68, p. 142 in Folland.
- 6. Let X be a locally compact Hausdorff space. Let μ be a Borel measure on X. We say it is a Radon measure if it satisfies these three properties:
 - (a) (local finiteness) For all compact sets K, $\mu(K) < \infty$.
 - (b) (outer regularity) For all Borel sets E

$$\mu(E) = \inf{\{\mu(U) : U \ open, E \subset U\}}$$

(c) (inner regularity) For all Borel sets E

$$\mu(E) = \sup \{ \mu(K) : K \, compact, K \subset E \}$$

Prove that if μ is such a measure, then $C_c(X)$, the continuous functions with compact support, are dense in $L^1(X,\mu)$.

7. Let X be a separable compact metric space. Prove that C(X) (real or complex valued) is separable. Hint: Let x_k be a dense sequence in X and consider the algebra of functions generated by the functions

$$f_{k,n} = \max\{0, 1 - n\rho(x, x_k)\}$$

where ρ is the metric.