Math 523b - Homework 3

- 1. Problem 2, p. 154 in Folland.
- 2. Problem 9, p. 155 in Folland.
- 3. Problem 21, p. 160 in Folland.
- 4. Problem 22, p. 160 in Folland.
- 5. Problem 25, p. 160 in Folland.
- 6. Problem 34, p. 164 in Folland.
- 7. Problem 37, p. 165 in Folland.
- 8. Problem 39, p. 165 in Folland.
- 9. This problem is a special case of a general theorem we will prove later. Let c_0 denote the Banach space of sequences which converge to 0 with the norm

$$||(x_n)_{n=1}^{\infty}||_{\infty} = \sup_{n} |x_n|$$

Let l^1 be the Banach space of absolutely summable sequences with the norm

$$||(x_n)_{n=1}^{\infty}||_1 = \sum_{n=1}^{\infty} |x_n|$$

Our goal is to show that the dual of c_0 can be identified with l^1 in a natural way.

(a) Given $x = (x_n)_{n=1}^{\infty} \in l^1$, define a linear functional ϕ_x on c_0 by

$$\phi_x((y_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} x_n y_n$$

Prove that ϕ_x is a bounded linear functional whose norm equals $||x||_1$. Thus the map $x \to \phi_x$ is an isometry of l^1 into the dual of c_0 .

(b) Prove that this isometry is onto.