Math 523b - Homework 6 (Last one!)

- 1. Folland problem 22, p. 225
- 2. Folland problem 24, p. 225
- 3. Folland problem 27, p. 225
- 4. In a homework problem you showed that the dual of c_0 , the space of sequences that converge to zero with the sup norm, is isometric to l^1 . Now let c denoted the space of real-valued sequences that converge to some finite real number. Given $y = \{y_n\}_{n=1}^{\infty} \in l^1$ we can still define a linear functional f_y by

$$f_y(\{x_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} x_n y_n$$

and the same argument as for c_0 proves this is a bounded linear functional with norm equal to the l^1 norm of y. So we have an isometry from l^1 into c^* .

- (a) The Riesz representation theorem says that the dual of c_0 is isometric with a space of measures. Explain briefly how this is related to the assertion that c_0^* is isometric with l^1 .
- (b) Prove that the isometry above from l^1 into c^* is not onto.
- (c) Prove that there is a linear function $f_{\infty} \in c^*$ so that every linear functional in c^* can be written as $f_y + a f_{\infty}$ for some $y \in l^1$ and some real number a. (So the range of the isometry has co-dimension 1.)
- 5. Let f(x) be a Borel measurable real-valued function on [0, 1] with $\int_0^1 f^2(x) dx < \infty$. Let $\{U_n\}_{n=1}^{\infty}$ be an independent sequence of random variables, each of which is uniformly distributed on [0, 1], i.e., the distribution P_{U_N} of U_n is Lebesgue measure on [0, 1]. Let

$$S_n = \frac{1}{n} \sum_{i=1}^n f(U_i)$$

Prove that S_n converges to the constant $\int_0^1 f(x) dx$ in probability.

6. Let E_n be a sequence of events. Recall that

$$\lim \sup E_n = \bigcap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_k$$

In probability this event is usually denoted $E_ni.o.$ where i.o. stands for "infinitely often." Let X_n be an independent, identically distributed sequence of non-negative random variables. Prove that $EX_1 < \infty$ if and only if $P(X_n \ge n \ i.o.) = 0$.

7. Suppose X_n are independent, identically distributed, and have finite second moment, i.e., $EX_n^2 < \infty$. We proved a weak law of large numbers which says that for any $\epsilon > 0$, the probability

$$P(|\frac{1}{n}\sum_{k=1}^{n}X_k - \mu| > \epsilon)$$

converges to zero as $n \to \infty$, but we didn't say anything about how fast it converges.

- (a) Use the proof from class of the weak law for the case of finite second moment to show it converges to zero at least as fast as $1/n^p$ for some power p. (I.e., show that the probability is $\leq c/n^p$ for some constant c, which can depend on ϵ .) You should find the biggest p you can.
- (b) Now suppose that you also know that $EX_n^4 < \infty$. Prove that $P(|\frac{1}{n}\sum_{k=1}^n X_k \mu| > \epsilon)$ converges to zero faster than your bound from (a), i.e., with a bigger p.