
4 Random walks

4.1 Simple random walk

We start with the simplest random walk. Take the lattice Z
d. We start at

the origin. At each time step we pick one of the 2d nearest neighbors at
random (with equal probability) and move there. We continue this process
and let Sm ∈ Z

d be our position at time m.
Here is a more careful definition. Let Xk be a sequence of random vectors

taking values in Z
d which are independent. Each Xk takes on the 2d values

±ei, i = 1, 2, · · · , d with probability 1/2d where ei is the unit vector in the
ith direction. Then we define

Sm =

m
∑

k=1

Xk (1)

Note that the quantities in this sum are vectors.
How far do we travel after m steps? Since E[Xk] = 0, we have E[Sm] = 0.

So the average position of the walk is always the origin. (This is just a trivial
consequence of the symmetry.) To compute the distance we could consider
E[|Sm|] where | | denotes the length of the vector. But it is much easier to
compute the mean squared distance travelled:

E[S2
m] =

m
∑

k=1

m
∑

l=1

E[Xk · Xl] (2)

If k 6= l, then by the independence E[Xk · Xl] = E[Xk] · E[Xl] = 0. If k = l,
E[Xk · Xl] = E[1] = 1. So E[S2

m] = m. So the root mean squared distance
behaves as E[S2

m]1/2 = mν with ν = 1/2. The exponent ν can be thought
of as a critical exponent. It is a bit strange to be talking about critical
phenomena here. Usually in statistical mechanics one must tune at least one
parameter to make the system critical. We will return to this point later.

Now we generalize the model. Instead of the nearest neighbor walk we
allow it to make more general jumps. So Xk is a sequence of independent,
indentically distributed random variables with values in Zd. The only con-
straint we keep is that E[Xk] = 0. (Note that Xk is a vector and 0 is the
zero vector here.) The above calculation still works and we have

E[S2
m]1/2 = cm1/2 (3)

1



where c2 = E[Xk · Xk]. In other words ν = 1/2 for a wide class of random
walks. We don’t need to stay on the lattice. We can let the Xk take values
in R

d and get a walk in the continuum (although time is still discrete).
The Sm form a discrete time stochastic process. We make this into a

continuous time stochastic process by linear interpolation. More precisely,

St =

{

St if t is an integer
linear on [m,m+1] if t ∈ [m, m + 1]

(4)

The typical size of St is
√

t which motiviates the following rescaling. For
each positive integer n, we let

Sn
t = n−1/2Snt (5)

For d = 1, if we picture a graph of St, then to get Sn
t we shrink the horizontal

(time) axis by a factor of n and shrink the vertical (space) axis by a factor of√
n. Note that for t which are equal to an integer divided by n, the variance

of Sn
t is t.
The scaling limit is obtained by letting n → ∞. The result is Brownian

motion. In the next section we define Brownian motion and give a precise
statement of the result that the scaling limit of the random walk is Brownian
motion

4.2 Brownian Motion

This discussion follows two books: Chapter 7 of Probability: Theory and Ex-
amples by Richard Durrett and chapter 2 of Brownian Motion and Stochastic
Calculus by Ioannis Karatzas and Steven Shreve.

We recall a basic construction from probability theory. Let (Ω,F , P ) be a
probability space, i.e., a measure space with P (Ω) = 1. Let X1, X2, · · · , Xm

be random variables, i.e., measurable functions. Then we can define a Borel
measure µ on R

m by

µ(B) = P ((X1, X2, · · · , Xm) ∈ B) (6)

where B is a Borel subset of R
m. One can then prove that for a fuction

f(x1, x2, · · · , xm) which is integrable with respect to µ, we have

Ef(X1, X2, · · · , Xm) =

∫

Rm

f(x1, x2, · · · , xm)dµ (7)

2



Of course, this measure depends on the random variables; when we need to
make this explicit we will write it as µX1,···,Xn

.
The random variables X1, X2, · · · , Xm are said to be independent if the

measure µX1,···,Xn
equals the product of the measures µX1

, µX2
, · · ·µXm

. Two
collections of random variables (X1, · · · , Xm) and (Y1, · · · , Ym) are said to be
equal in distribution if µX1,···,Xn

= µY1,···,Yn
.

We now turn to Brownian motion. It is a continuous time stochastic
process. This means that it is a collection of random variables Xt indexed
by a real paramter t.

Definition 1. A one-dimensional (real valued) Brownian motion is a stochas-
tic process Bt, t ≥ 0, with the following properties.
(i) If t0 < t1 < t2 < · · · tn, then Bt0, Bt1 − Bt0 , Bt2 − Bt1 , · · · , Btn − Btn−1

are independent random variables.
(ii) If s, t ≥ 0, then Bt+s −Bs has a normal distribution with mean zero and
variance t. So

P (Bt+s − Bs ∈ A) =

∫

A

(2πt)−1/2 exp(−x2/2t)dx (8)

where A is a Borel subset of the reals.
(iii) With probability one, t → Bt is continuous.

In short, Brownian motion is a stochastic process whose increments are
independent, stationary and normal, and whose sample paths are continuous.
Increments refer to the random variables of the form Bt+s − Bs. Stationary
means that the distribution of this random variable is independent of s. In-
dependent increments means that increments corresponding to time intervals
that do not overlap are independent. Proving that such a process exists is
not trivial, but we will not give the proof. The above definition makes no
mention of the underlying probability space Ω. One can take it to be the
set of continuous functions ω(t) from [0,∞) to R with ω(0) = 0. Then the
random variables are given by Bt(ω) = ω(t). Unless otherwise stated, we will
take B0 = 0. We list some standard consequences of the above properties.

Theorem 1. If Bt is a Brownian motion then
(a) Bt is a Gaussian process, i.e., for any times t1, · · · , tn, the distribution
of Bt1 , · · · , Btn has a multivariate normal distribution.
(b) EBt = 0 and EBsBt = min{s, t}.
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(c) Define

p(t, x, y) = (2πt)−1/2 exp(
−(x − y)2

2t
) (9)

Then for Borel subsets A1, A2, · · · , An of R,

P (Bt1 ∈ A1, Bt2 ∈ A2, · · · , Btn ∈ An) =
∫

A1

dx1

∫

A2

dx2 · · ·
∫

An

dxn p(t1, 0, x1) p(t2 − t1, x1, x2) · · · , p(tn − tn−1, xn−1, xn)

Exercise: Prove the above. Hint for (b): If random variables X and Y are
independent, then E XY = EX EY . For s > t, write Bs as (Bs − Bt + Bt).

The definition of d-dimensional Brownian motion is easy. We take d
independent copies of one-dimensional Brownian motion, and label them as
B1

t , B
2
t , · · · , Bd

t . Then (B1
t , B

2
t , · · · , Bd

t ) is a d-dimensional Brownian motion.
We can also think of the two-dimensional Brownian motion (B1

t , B
2
t ) as a

complex valued Brownian motion by considering B1
t + iB2

t .
The paths of Brownian motion are continuous functions, but they are

rather rough. With probability one, the Brownian path is not differentiable
at any point. If γ < 1/2, then with probability one the path is Hölder
continuous with exponent γ. But if γ > 1/2, then the path is not Hölder
continuous with exponent γ. For any interval (a, b), with probability one the
path is neither increasing or decreasing on (a, b). With probability one the
path does not have bounded variation. This last fact is important because it
says that one cannot use the Riemann-Stieltjes integral to define integration
with respect to Bt.

For later purposes we make the following observation. Suppose we only
look at Brownian motion at integer times: Bn. Define Xk = Bk − Bk−1.
Then Xk is independent and each Xk has a standard normal distribution. So
Bn =

∑n
k=1 Xk is random walk with Gaussian steps.

4.3 Brownian motion as scaling limit of random walks

We now return to the process defined by rescaling the random walk, eq (5).
We take d = 1 and assume that E[X2

k ] = 1. Consider times 0 < t1 <
t2 < · · · tm where each time is equal to some integer divided by n. (should

replace n by 2n ???) Consider the random variables St1 , St2 −St1 , · · ·Stm −
Stm−1

. Each of them is a sum of a subset of the Xi and no Xi appears in
more than one of these sums. Thus these random variables are independent.
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If n is large, each of the random variables is the sum of a large number of
i.i.d. random variables and so is approximately normal. So Sn

t is looking
like Brownian motion, at least at the times which are multiples of 1/n. So
we can hope that as n → ∞, Sn

t will converge to Brownian motion. This
is indeed a theorem, proved by Donsker in 1951 and sometimes called the
invariance principle. To state it in its strongest form requires a definition
about convergence of measures. We start by stating a weaker form that is a
bit easier to digest.

Theorem 2. (invariance principle) Fix times 0 < t1 < t2 < · · · < tm. We
use Erw to denote expectation with respect to the probability measure for the
original i.i.d. sequence Xi. Let Xt be a Brownian motion. We use Ebm to
denote expectation with respect to its probability measure. Then for every
bounded continuous function f(x1, x2, · · · , xm) on R

m, we have

lim
n→∞

Erwf(Sn
t1, S

n
t2 , · · · , Sn

tm) = Ebmf(Xt1 , Xt2 , · · · , Xtm) (10)

This is already a pretty good theorem and the following somewhat tech-
nical discussion is only to get a stronger statement of the above and can be
skipped without a big loss. The technical stuff ends where we consider how
Brownian motion illustrates the ideas of scaling limits, critical phenomena
and universality.

Definition 2. Suppose that the sample space Ω is a metric space. Suppose
that Pn is a sequence of probability measures on Ω defined on the Borel sub-
sets. Let P be another such probability measure. We say that Pn converges
weakly to P if

lim
n→∞

∫

fdPn =

∫

fdP (11)

for every bounded, continuous real-valued function f on Ω.

Now look at the conclusion of the theorem. For each n let µn be the proba-
bility measure on R

m that comes from the random variables Sn
t1 , S

n
t2 , · · · , Sn

tm .
Let µ be the probability measure on R

m that comes from Xt1 , Xt2 , · · · , Xtm .
Then the conclusion of the above theorem is that µn converges weakly to
µ. A probabilist says that the sequence of random vectors (Sn

t1
, Sn

t2
, · · · , Sn

tm)
converges in distribution to (Xt1 , Xt2 , · · · , Xtm). And the conclusion of the
above theorem is that the finite dimensional distributions of Sn

t converge in
distribution to those of Brownian motion.
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The stronger form of the theorem does not just look at the process at
a finite set of times. Let C[0,∞) be the space of continuous functions on
[0,∞). We let P denote the probability measure on this space for Brownian
motion. For each n, Sn

t is a continuous function of t. So Sn
t also defines a

probability measure on C[0,∞). We denote it by Pn. It is supported on
piecewise linear functions.

Theorem 3. (Invariance principle of Donsker) Let Xi be an i.i.d. sequence
of random varibles defined on the probability space (Ω,F , P ). Suppose that
they have mean zero and variance 1. Define Sn

t by the linear interpolation
and scaling defined above, and let Pn be the probabilty measure on C[0,∞)
induced by the process Sn

t . Then Pn converges weakly to a probability measure
P for which Bt(ω) = ω(t) is standard one-dimensional Brownian motion.

What about higher dimensions? There is an easy extension. Take Xk =
(X1

k , X
2
k , · · · , Xd

k) where the full set of X i
k k = 1, 2, 3, · · · , i = 1, 2, · · · , d is

independent and we assume E[X i
k] = 0 and E[(X i

k)
2] = 1. Then is fol-

lows immediately from the one-dimensional result that Sn
t converges to a d

dimensional Brownian motion in the same sense as the 1d theorem.
If we consider Xk which do not have independent components, things

are a little more involved. Here is a silly example. Let X1
k be independent,

taking on the values ±1 with probability 1/2. Then define X2
k = X1

k . The
resulting random walk stays on the line with slope 1. It does not converges
to 2d Brownian motion. (In fact it will converge to a 1d Brownian motion
with modified variance.) Back to the general situation. For d dimensional
Brownian motion, we have

E[Bi
tB

j
t ] = δi,jt (12)

So if the random walk is to have a chance of converging to Brownian motion
we need

E[X i
kX

j
k] = δi,j (13)

and of course E[X i
k] = 0. This is in fact sufficient to get convergence to d

dimensional Brownian motion. If (13) does not hold, we will get convergence
to what you might call a correlated Brownian motion in which

E[Bi
tB

j
t ] = Ci,jt (14)
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where the matrix C is given by

Ci,j = E[X i
kX

j
k ] (15)

We now consider how Brownian motion illustrates the ideas of scaling
limits, critical phenomena and universality. We start with the scaling limit.
Usually in statistical physics one starts with a model defined on a lattice and
then tries to understand what the scaling limit is. If we take Xi = ±1 with
equal probability, then the random walk stays on the lattice Z. The scaling
limit is what we did above when we shrunk time by a factor of n and space
by a factor of

√
n. For this model we have a candidate for the scaling limit

(Brownian motion) and a theorem that says the scaling limit is indeed equal
to Brownian motion. This is not the typical situation in statistical physics.
There we are lucky if we have an explicit candidate for the scaling limit and
extremely lucky if we have a theorem that says the scaling limit does coverge
to the candidate.

Now consider universality. The invariance principle is a very strong form
of universality. It says that we can start with any random walk, subject
only to the conditions that the steps have mean zero and variance 1, and
the scaling limit will converge to the same stochastic process, i.e., Brownian
motion. We have stated the invariance principle only for one dimension. But
it is true in any number of dimensions. For example, we can take a random
walk on the lattice Z

d which at each step moves by ±ei with probability
1/2d where ei is the unit vector in the ith coordinate direction. We then
take a scaling limit as we did above. This will converge to a d-dimensional
Brownian motion. (I am ignoring a slight rescaling that needs to be done
here.)

Finally we consider criticality. In the scaling limit the steps of the random
walk are of size 1/

√
n. So the random walk is formed by combining infinitely

many microscopic random inputs. The result, Brownian motion, is clearly
random. So it appears that Brownian motion is a critical phenomena. This
is a bit confusing from the viewpoint of statistical physics. Usually in a
statistical physics model one must adjust a parameter, e.g., the temperature,
to a particular value to make the model have critical behavior. There appears
to be no such parameter in the random walk model. To see how the random
walk is critical we must consider it as a special case of a more general model.
We give two ways to doing this. The first is rather simple, but the second is
more interesting and more relevant for what we will do with the self-avoiding
walk.
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In some sense the condition that the mean of the step Xi must be zero
plays the role of adjusting a parameter to make the model critical. Consider
a one-dimensional random walk with steps of ±1, but now take Xi = 1 with
probability p and Xi = −1 with probability 1 − p with p 6= 1/2. Now the
typical size of Sn is n, not

√
n as before. So to construct a scaling limit we

must define
Sn

t = n−1Snt (16)

Now in the scaling limit, Sn
t will converge to a straight line with a slope

which depends only on p. So the scaling limit has no randomness at all.
Thus the microscopic randomness produces macroscopic randomness only at
the critical point p = 1/2.

The second way of generalizing the random walk is the following. For
concreteness we work in two dimensions on the square lattice but you can
do this in any dimension on any lattice. Fix a domain containing the origin,
e.g., a unit disc centered at the origin. Introduce a lattice with spacing
1/n. Note that we use 1/n rather than 1/

√
n. Now run the walk until it

first exits the disc. The result is a probability measure on nearest neighbor
walks ω that start at the origin and end on the boundary or just outside
the disc. Note that these walks have varying length which we will denote
by |ω|. The probability of a single ω is 4−|ω|. The scaling limit is given by
letting n → ∞. It gives a probabilty measure on curves in the domain that
start at the origin and end on the boundary. The scaling limit is equal to
the probability measure we get by starting a Brownian motion at the origin
and running it until it exits the domain.

Now we generalize the model. We take all nearest neighbor walks that
start at the origin and end just outside the domain and give such a curve the
weight e−β|ω|. Then we normalize the resulting measure. If we take eβ = 4,
this given the original random walk. For larger values of β we can think of
it as the original random walk model with a penalty based on the length
of the walk. Longer walks are supressed. Suppose β is really large. Then
the probability measure will be dominated by the shortest walks from the
origin to the boundary. So the microscopic randomness only shows up at the
macroscopic scale in a trivial way. As we lower β this will continue to be the
case until we reach the critical value of β = ln 4 when we see macroscopic
randomness in the scaling limit.

Exercise: For p 6= 1/2, find the slope m of the line to which (16) converges.
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Prove that for t > 0,
lim

n→∞
Sn

t = mt (17)

with probability one. Hint: law of large numbers.

Exercise: Consider the nearest neighbor simple random walk on the square
lattice. So Xk takes on the values (1, 0), (−1, 0), (0, 1), (0,−1), all with prob-
ability 1/4. The components of Xk are not independent. Now suppose we
rotate the square lattice by 45 degrees. We still consider the nearest neighbor
walk, so the steps are along lines with slope 1 or −1. Show that Xk now has
independent components and so we can conclude that the scaling limit is a
two dimensional Brownian motion.

Exercise: Consider the model of nearest neighbor walks in a domain that
start at the origin and end on the boundary of the domain weighted by e−β|ω|.
For concreteness consider the walk on the square lattice, so the critical value
of β is ln(4). What happens to the model if β < ln(4)? Hint: first consider the
extreme case of β = 0 and compute the normalizing factor for the probability
measure.

4.4 Self-avoiding random walk

We take a lattice, e.g., in two dimensions the square, triangular or hexagonal
lattice, and we fix a natural number N . We consider all walks with N steps
which start at the origin, take only nearest neighbor steps and do not visit
any site more than once. So a walk ω is a function ω from {0, 1, 2, · · · , N}
into the lattice such that

ω(0) = 0

|ω(i) − ω(i − 1)| = 1, i = 1, 2, · · ·N
ω(i) 6= ω(j), 0 ≤ i < j ≤ N

(18)

There are a finite number of such walks for any fixed N , and we put a
probability measure on this set by requiring that all such walks be equally
probable.

The self-avoiding walk is of interest to physicists since it is model for
polymers in dilute solution. More generally, it is of interest since it is a simple
model that exhibits critical phenomena and universality. There are a variety
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Figure 1: Three self-avoiding walks in the full plane with 1K, 10K and 100K
steps. Each walk has been scaled by N−3/4.

of critical exponents that describe the behavior of the model. Figure 1 shows
three self-avoiding walks with N = 1, 000, N = 10, 000 and N = 100, 000.
Each walk has been scaled by N−3/4 so that they are all on a scale of order
one.

Let cN be The number of self-avoiding walks with a given length N is
a very hard problem and no one expects an explicit answer. We can say
something about cN . We claim cn+m ≤ cncm. (The proof is left as a home-
work.) This implies lim ln(cN)/ ln(N) exists. Call it ln(µ). For the square
lattice numerical works says µ ≈ 2.638. On the hexagonal lattice there is a

conjecture that µ =
√

2 +
√

2.
It is believed that

cN ≍ µNNγ−1 (19)
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where µ depends on the particular lattice (and of course on the number of
dimensions) but γ only depends on the number of dimensions. At first it
looks like γ is a really uninteresting exponent since in the above it describes
a small correction to the geometric growth of the number of SAW’s. But it
also describes something a lot more interesting. Suppose we take two N step
SAW’s starting at the origin and ask what is the probability that they don’t
intersect. If they don’t then together they form a 2N step SAW. It does not
start at the origin, but it has its midpoint at the origin. So we will create
all 2N step SAW’s with their midpoint at the origin this way. Hence the
probability the two N steps SAW’s do not intersect must be

C2N

c2
N

=
(2N)γ−1µ2N

[Nγ−1µN ]2
=

2γ−1

Nγ−1
(20)

So the prob is proportional to N1−γ .
Another critical exponent is related to the growth of the mean distance

the walk travels as a funtion of N . The critical exponent ν is defined by

E[ω(N)2] ∼ N2ν (21)

The expected value E is with respect to the uniform probability measure
described above and ω(N)2 is the square of the distance from the origin to
the lattice point ω(N). Everyone believes that in two dimensions ν = 3/4.
There are essentially no rigorous results on ν. In fact, there is not even a
proof in two (or three) dimensions that ν is bigger than 1/2, the value for
the ordinary random walk.

The exponent ν does not tell us how the endpoint of the walk is dis-
tributed, so the next quantity to look at is the distribution of ω(N). It is
natural to scale it by a factor of N−ν and study this distribution in the limit
that N goes to ∞. Of course, for the ordinary random walk this would give a
Gaussian distribution. The limiting distribution for the self-avoiding walk is
not expected to be Guassian, but is still expected to be rotationally symmet-
ric, so we will only look at the distribution of N−ν |ω(N)|. This distribution
for the self-avoiding walk is shown in figure 2. We also show the distribution
for the distance from the endpoint of the walk to its midpoint. We have
scaled both random variables so that they each have mean equal to 1. For
comparison the analogous distribution for the ordinary random walk is also
shown.

A third critical exponent may be defined as follows. Consider all SAW
with N steps that start at the origin but then stay in the upper half plane.
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Figure 2: Distribution of the end to end distance and the end to midpoint
distance for the SAW. The distances have been rescaled so their mean is one.
The end to end distance for the ordinary random walk is also show.

Let BN be the number of such SAW’s with N steps. It is believed that this
number has the same geometric growth as the number of all SAW, but with
a different power law :

BN ≍ µNNγ−1−ρ (22)

Here γ is the same as before. So the above defines the exponent ρ. The
reason for this way of setting up the exponent is that the probability that an
N step SAW starting at the origin stays in the upper half plane is

BN

AN

≍ µNNγ−1−ρ

µNNγ−1
= N−ρ (23)

The above definition was in the full plane. Now let D be a connected
unbounded domain with 0 ∈ ∂D. An important example is the upper half
plane. Introduce the lattice δZ

2. Fix an integer N and consider all the
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self-avoiding nearest neighbor walks that start at the origin and stay inside
D. We put a probability measure on this finite set by making these walks
equally probable. Now we take two limits. First we send N → ∞. This
should give a probability measure on infinite self-avoiding walks that stay in
D. Everyone believes this limit exists, but this has only been proved for the
half-plane. Next we let δ → 0. This should give a probability measure on
continuous curves in D that start at 0 and presumably “end” at ∞. This
defines the scaling limit of the self-avoiding walk in an unbounded domain
between a boundary point and ∞. There are no rigorous results on the
existence of this limit. Note that ∞ can be thought of as a boundary point
for an unbounded domain.

Now consider a bounded domain D and let z and w be points on its
boundary. We want to define the SAW in D between these two points.
Again, we introduce the lattice δZ

2. We take all self-avoiding walks that go
from z to w and stay in D. We now consider walks with any number of steps.
Define a probability measure on this finite set by requiring the probability of
a walk to be proportional to e−β|ω| where β is a parameter and |ω| denotes
the number of steps in ω. Note that if we do this without the self-avoiding
constraint and take eβ = 4 (for the square lattice), then we get the random
walk in D starting at z and conditioned to exit D at w. This suggests that
for the self-avoiding walk we should choose β as follows. The number of
self-avoiding walks of length N is believed to grow like µN . We should take
eβ = µ. To construct the scaling limit of the self-avoiding walk we let δ → 0.
(The definition of the scaling limit for a bounded domain is rather different
than for an unbounded domain. In particular it only involves a single limit.)

For the Ising model and percolation we got critical behavior only when
a parameter (or two) is equal to a specific value. Similarily, we get critical
behavior for the self-avoiding walk in a bounded domain only if β = βc.
What happens if β 6= βc ? My guess is that for β > βc, the scaling limit will
give a curve that is just a straight line from z to w (if such a line lies in D.)
For β < βc ???

We end this section with a brief discussion of some other versions of the
self-avoiding walk. In the model we have considered, we forbid the walk to
visit a site more than once. So we could refer to this as the site avoiding walk.
Another model is the “bond avoiding walk.” We allow all nearest neighbor
walks which contain any given bond at most once. Then we put the uniform
measure on the set of such walks with N steps. Note that this allows some
walks with loops. In fact you can have a really big loop. However, it is
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Figure 3: Two of the walks shown are site-avoiding, two are bond-avoiding.

believed that the scaling limit of this model is the same as the scaling limit
of the site avoiding walk. Figure 3 shows two bond-avoiding walks, two
site-avoiding walks. Explain why large loops are suppressed.

Another model is the “weakly self-avoiding walk.” We allow all nearest
neighbor walks. We take the probability of a walk ω to be proportional to
exp(−βI(ω)), where I(ω) is the number self intersections, i.e., the number
of pairs i, j with 0 ≤ i < j ≤ N such that ω(i) = ω(j). It is also believed
that the scaling limit of this model is the same as the first self-avoiding walk
we defined. In particular, in five and more dimensions the scaling limit of
this model has been proved to be Brownian motion. In fact, this is the first
model for which there were rigorous results for d > 4.

Discuss conformal invariance

Exercise: Recall that cn is the number of SAW’s with n steps which start
at the origin. Prove that cn+m ≤ cncm. This says that ln(cn) is a subadditive
function. Use this to prove

lim
n→∞

ln(cn)

n
(24)

exists and equals infn ln(cn)/n.
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4.5 RG view of the CLT and the random walk

We return to the simple random walk introduced in the first section. For
reasons that will be soon be obvious, we take the number of steps to be a
power of two, 2m. We include a scaling factor of 2−m/2.

S2m = 2−m/2
2m

∑

k=1

X0
k (25)

We group the sum as

S2m = 2−(m−1)/2
2m−1

∑

k=1

X0
2k−1 + X0

2k√
2

= 2−(m−1)/2
2m−1

∑

k=1

X1
k (26)

where

X1
k =

X0
2k−1 + X0

2k√
2

(27)

Note that we added a superscript 0 to the original random variables. In
general we will use a superscript m for quantities that are obtained after m
interations of the renormalization group. Now we continue.

S2m = 2−(m−2)/2
2m−2

∑

k=1

X1
2k−1 + X1

2k√
2

= 2−(m−2)/2
2m−2

∑

k=1

X2
k (28)

where

X2
k =

X1
2k−1 + X1

2k√
2

(29)

In general,

S2m = 2−(m−p)/2
2m−p

∑

k=1

Xp
2k−1 + Xp

2k√
2

= 2−(m−p−1)/2
2m−p

∑

k=1

Xp+1
k (30)

where

Xp+1
k =

Xp
2k−1 + Xp

2k√
2

(31)
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Thus we want to study the map on probability distributions for real valued
random variables that is given by the following prescription. Let X1, X2 be
independent and identically distributed. Define

X =
1√
2
[X1 + X2] (32)

In the following we let FY (y) denote the cumulative distribution function of a
random variable Y , i.e., FY (y) = P (Y ≤ y). We assume that all the random
variables have continuous distributions, and let fY be the density of Y . So
fY is the derivative of FY . Then we have

FX(x) = P (X ≤ x) = P (X1 + X2 ≤
√

2x) = FX1+X2
(
√

2x) (33)

and so

fX(x) =
√

2fX1+X2
(
√

2x) (34)

The density of the sum of two independent random variables is the convolu-
tion of their densities, so

fX1+X2
(x) =

∫

fX1
(x − y) fX2

(y) dy (35)

and so

fX(x) =
√

2

∫

fX1
(
√

2x − y) fX2
(y) dy (36)

Since X1 and X2 have the same distribution, fX1
= fX2

. Denote this common
density by f0(x). So we want to study the map f0 → f1 where

f1(x) =
√

2

∫

f0(
√

2x − y) f0(y) dy (37)

Since f0 is a probability density, its integral is 1. It is easy to check that
f1 has this property as well. (It must; it is the density of a random variable.)
Likewise f0 satisfies

∫

x f0(x)dx = 0 (38)
∫

x2 f0(x)dx = 1 (39)

16



and it is easy to check that f1 has these properties as well. Again, this also
follows immediately from probability considerations.

It is easier to study the map (37) in Fourier space. We let f̂(k) denote
the Fourier transform of f :

f̂(k) =

∫

e−ikx f(x) dx (40)

Then the RG map becomes

f̂1(k) = f̂0(
k√
2
)2 (41)

It is easy to check that exp(−k2σ2/2) is a fixed point of this map for any
choice of σ. This is the fourier transform of the normal distribution with
mean zero and variance σ2. The three “conservation laws” become

f1(0) = 1,

f ′
1(0) = 0,

f ′′
1 (0) = −1

What about the stability of this fixed point? We take σ = 1 for con-
venience. We want to study the linearization of this map. We consider a
pertubation of the form

f̂(k) = e−k2/2[1 + p(k)] (42)

We only consider pertubations consistent with the conservation laws. This
means

p(0) = 0, p′(0) = 0, p′′(0) = 0 (43)

In other words the Taylor series of p(k) vanished to second order.
Linearized map is

(Lp)(k) = 2p(
k√
2
) (44)

Let pm(k) = km, then pm is an eigenfunction with eigenvalue 21−m/2. For
m > 2 this eigenvalue is less than 1. So these are stable directions for the
fixed point.
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Exercise: Instead of (45) consider

X =
1

2
[X1 + X2] (45)

We still take X1 and X2 to be independent and identically distributed. The
only change is that the scaling factor is 2, not

√
2. Show that f̂(k) =

exp(−|k|) is a fixed point of this map. Study the linear stability of this
fixed point. What probability density does this correspond to? Why does
this not contradict the central limit theorem?

Exercise: Generalize the previous exercise. Hint : f̂(k) = exp(−|k|α).
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