
5 Gaussian integral and processes

5.1 Jointly Gaussian random variables

Def A RV X is Gaussian if its density is

fX(x) =
1

σ
√

2π
exp[−(x − µ)2

2σ2
] (1)

We have EX = µ and var(X) = σ2. The characteristic function (fourier
transform) is

EeitX = exp[itµ − 1

2
σ2t2] (2)

We want to generalize this to n RV’s. It is not enough that each Xi be
Gaussian. We need to specify their joint distribution. This is best done in
terms of the characteristic function.
Def X1, X2, · · · , Xn are jointly Gaussian if

E exp[i

n
∑

j=1

tjXj] = exp[i

j
∑

j=1

tjµj −
1

2

n
∑

j,k=1

tjtkCj,k]

for some real numbers µj and a real, non-negative symmetric matrix Ci,j.

Proposition 1. (a) Let X1, · · · , Xn be jointly Gaussian and Mi,j an m × n
matrix. Define

Yi =
n

∑

j=1

Mi,jXj, i = 1, 2, · · ·n

Then the Y1, · · ·Ym are jointly Gaussian
(b)

E(Xj − µj)(Xk − µk) = Cjk

(c) If the matrix Ci,j is invertible, then the joint density is

fX1,···,Xn
(x1, · · · , xn) =

1

(2π)n/2
√

det(C)
exp(−1

2

n
∑

j,k=1

(xj − µj)(xk − µk)(C
−1)j,k)

Here C−1
j,k is the j, k entry of the inverse of C.
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Def Let Xt be a stochastic process where t ranges over some index set T .
(T could be R, [0,∞), Z

d, R
d.) We say Xt is Gaussian if for all n and

t1, t2, · · · tn ∈ T , the random variables Xt1 , Xt2, · · · , Xtn are jointly Gaussian.
The mean of the process is

µ(t) = EXt

The covariance is

C(t, s) = EXtXs − EXtEXs

Explain how mean and covariance completely determine a Gaus-

sian process

Exercises

1. Prove part (c) of the proposition.

2. Let X1, X2, · · ·Xn be jointly Gaussian. Recall that the covariance of X
and Y is Covar(X, Y ) = E[XY ] − E[X]E[Y ]. Prove that X1, · · · , Xn is
independent if and only if Covar(Xi, Xj) = 0 for i 6= j.

3. Let Bt be standard Brownian motion. Fix a time T and some real number
a . Let

Xt = at +
T − t

T
B(

tT

T − t
) (3)

Show that Xt is a Gaussian process on [0, T ] and compute its mean and
covariance functions. This is straightforward. The point of this problem is
to introduce this process. It is called the Brownian bridge. Note that the
sample paths start at 0 and end at a. It is in fact what you get if you take
a Brownian motion starting at 0 and condition it to end at a at time T .
For a challenge, prove this. Note that we are conditioning on an event of
probability zero, so you have to do this by a limiting process. First condition
on the event that it ends within distance δ of a at time T and then let δ → 0.

5.2 Existence of infinite dimensional Gaussian processes

This may never be written
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5.3 Examples

5.3.1 Brownian motion

Brownian motion is a Gaussian process. Its mean µ(t) is identically zero and
its covariance is C(s, t) = min{s, t}.

5.3.2 Massless free field

Ising can be rewritten as

Z =
∑

σ

exp[−β/2
∑

i,j

(σi − σj)
2]

We continue to work with a lattice, but now we take varaibles σi at each
lattice site which take values in R instead of ±1. We write them as φi. So

Z =

∫

exp[−β/2
∑

i,j

(φi − φj)
2]dφ

where dφ stands for
∏

i dφi, i.e., the product of Lebesgue measure at each
lattice site. This is not defined unless we have a finite number of lattice sites,
but the above looks like a Gaussian integral. Pretending that it makes sense,
we will try to figure out what the covariance of Gaussian process should be.

∑

i,j

(φi − φj)
2 = (φ,−∆φ) (4)

Here φ stands for the vector (φi)i∈Λ and the inner product on the right side
is ... This equation defines the lattice Laplacian operator ∆. If we work on
the infinite lattice like Z

d it is an infinite dimensional matrix with entries

−∆(i, i) = 2d (5)

−∆(i, j) = −1, if |i − j| = 1 (6)

−∆(i, j) = 0, if |i − j| > 1 (7)

So the above looks like a Gaussian process with covariance (−∆)−1. To
make sense of this we need to study the lattice Laplacian and in particular
diagonalize it.

3



We work on a hypercube

Λ = {(j1, j2, · · · , jd) : 1 ≤ jl ≤ L} (8)

We define

Λ? = {(2πk1

L
,
2πk2

L
, · · · , 2πkd

L
) : 0 ≤ kj ≤ L} (9)

Then for k ∈ Λ?, define

ek(j) = exp(ik · j) (10)

Then

−∆ek = λ(k)ek (11)

where

λ(k) =

d
∑

j=1

2(1 − cos(kj)) (12)

5.3.3 Orstein-Uhlenbeck process and the massive free field

Covariance is (−∆ + m2)−1

Exercise

1. Diagonalizing lattice laplacian
(a) Show that ek(j) is indeed an eigenfunction of the lattice Laplacian with
the given eigenvalue.
(b) If you want to drive yourself crazy, consider the lattice Laplacian on
the hexagonal and or triangular lattices and find their eigenfunctions and
eigenvalues.

2. The covariance of the massive free field on the lattice Z
d is

C(l, m) = c

∫

[0,2π]d
ddk exp(ik · (l − m))

[

d
∑

j=1

2(1 − cos(kj)) + m2

]−1

(13)

Prove that this equation defined a bounded, continuous nonnegative definite
function in any number of dimensions. So there is a Gaussian process with
this as its covariance.
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