
7 Euclidean field theory as classical statisti-

cal mechanics and more RG

7.1 “Spins” in R

In the Ising model the spins at each site take on only two values. There are
a variety of ways to generalize this. One can let the spin take on some finite
number of values greater than 2 (Potts models). One can let the spin equal
points on a circle or sphere (rotator or sigma models). In this chapter we
will consider models in which the “spins” si take on all real values and the
Hamiltonian is of the form

H(s) =
1

2

∑

<i,j>

(si − sj)
2 +

∑

i

V (si)

where V (x) is just a real valued function of a single real variable. If si only
equals ±1, then (si − sj)

2 = 2 − 2sisj, which is just the nearest neighbor
Ising interaction.

There are several motivations for studying models like this. First, if we
take V (x) to be a “double well” potential like that shown in figure ?????,
then the model acts very much like the Ising model since the probability
measure is dominated by configurations in which the spins si are near the
bottoms of the two wells at ±1. If we replace the quadratic term in the
Hamiltonian by a more general quadratic function, it is possible to write the
Ising model exactly as a continuous spin system. The transformation that
does this is known as ???. We will return to it later. Other models of interest
in statistical mechanics, in particular Coulomb systems and dipole systems,
may be related to continuous spin systems through a transformation known
as the sine-Gordon transformation.

A second motivation comes from the renormalization group itself. All the
renormalization group transformations we considered in the previous chapter
mapped Ising like models into Ising-like models, i.e., the block spins only took
on the values ±1. Another transformation would be to define the block spin
to be the sum of the spins in the block. For 2 by 2 blocks this block spin
would take on the values −4,−2, 0, 2, 4. As we iterate the transformation the
number of possible values of the block spins would grow. Like the quasilinear
transformations for the Ising model, this transfomation must also include a
rescaling of the spin if it is to have a fixed point. Then in the limit of
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infinitely many iterations the block spin would take on all real values, and
we would have a continuous spin system. Of course, we would not expect
the renormalized Hamiltonian to be so simple that it would be of the above
form.

A third motivation for studying such systems is that they are models from
a different area of physics - quantum field theory which describes elementary
particles. The above model is too simple to describe any real particles, but
the theories of electromagnetic interactions and the other interactions be-
tween elementary particles are generalizations of the above.

It is customary to denote the continuous spins as φi rather than si and to
refer to them as fields rather than spins. As in the case of the Ising models,
we need to first define the model in a finite volume. To be concrete we will
take the potential V (x) to be λ(x− 1)2(x+1)2 where λ is a large parameter.
If the purpose of this term is to make our model look like the Ising model,
then it is natural to only multiply the interaction (φi − φj)

2 by β. So we let

H(φ) =
β

2

∑

<i,j>

(φi − φj)
2 + λ

∑

i

(φi − 1)2(φi + 1)2 (1)

Let Λ be a finite subset of R
d. The partition function or normalization is

given by

Z =

∫

RΛ

exp[−H(φ)]
∏

i∈Λ

dφi

and we define a probability measure on R
Λ by

dµ(φ) = Z−1 exp[−H(φ)]
∏

i∈Λ

dφi

We will denote the expectation of a function F (φ) with respect to such a
probability measure by < F (φ) >.

As with the Ising model there are a variety of choices for the boundary
conditions. Free boundary conditions mean that we only sum over nearest
neighbor pairs < i, j > for which both of i and j are in Λ. We could also
sum over all pairs such that at least one of the sites is in Λ and then fix the
value of φi outside the volume. We might fix it to be +1 or −1 to try to pick
out one of the two wells. We could also fix the value outside the volume to
be zero. This is known as Dirichlet boundary conditions. (The first term in
the Hamiltonian is a finite difference Laplacian, and the boundary condition
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we just described is the analog of the Dirichelt boundary condition for the
usual Laplacian.) Periodic boundary conditions may also be defined in the
obvious way.

We now fix λ to be some large value. The probability measure will be then
be concentrated on configurations for which most of the φi are close to −1 or
+1. What happens as we vary β from small to large values? In particular,
can we obtain different infinite volume measures by different choices of the
boundary conditions.

If β is small we might hope to mimic the proof of ???. We don’t have an
identity like ??, but we could try something similar by writing

exp[−
β

2

∑

<i,j>

(φi − φj)
2] =

∏

<i,j>

[1 +K(φi − φj)]

where K(φi −φj) = exp[−β
2

(φi − φj)
2]− 1. We then expand out this product

over nearest neighbor bonds to produce a sum of subsets of the set of bonds.
Some of the neat tricks we used in the Ising case are no longer present. In
particular, the contribution of a particular set of bonds may be nonzero even
though the set of bonds has nontrivial boundary. In the Ising proof we had
factors of tanh(β) which are small if β is small. In the present case small β
implies K(φi − φj) is small if φi and φj are of order 1. Unfortunately these
fields can be arbitrarily large. This happens with small probability, but the
reader can see that things are a good bit more complicated. We will need to
deal with the rare events of large fields by a separate argument. Although
the argument is more complicated, it is possible to prove that when β is small
the boundary conditions don’t matter. The model is in a “high temperature”
phase.

When β is large we might try to adapt the Peierls argument to the present
case. We could define the contour by looking only at the sign of the fields
φi. We would include a bond in the dual lattice in the Peierls contour if the
fields on opposite sides of the bond had different signs. Since the fields are
usually near ±1, the energy in the Hamiltonian associated with a contour is
usually close to twice the number of bonds in the the Hamiltonian. However,
it is possible for the fields on opposite sides of a bond in the contour to both
be close to zero. Thus the energy of the contour can be essentially zero. This
bad case should be very rare, but clearly it will take a lot more work to carry
out the Peierls argument in this case. It can be done, and one can prove
that for large β the boundary conditions do matter and the model is in a low
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temperature phase.
Like the Ising model the above Hamiltonian has a symmetry. If we change

the sign of all the fields, i.e., let φ→ −φ then H(φ) is unchanged. Not all of
the boundary conditions we described respect this symmetry. We can also
break the symmetry as we did in the Ising model by adding a magnetic field
term h

∑

i φi to the model. Another way to generate different infinite volume
measure when β is large would be to let h → 0+ or h → 0− after we had
taken the infinite volume limit.

As β goes from small to large values there should be a critical value βc

at which the boundary conditions start to matter. (The critical value will
depend on the value of λ.) We can study all of the question we did in the Ising
model. In particular we can define critical exponents. It is believed that the
critical exponents of our continuous spin model are exactly the same as for
the Ising model! The second motivation we gave for studying the continuous
spin models is the reason. This sort of RG transformation should take Ising
models into continuous spin models.

As in the Ising systems, an important object to study is the “two point
correlation function ”, < φiφj >. In particular we would like to know how it
decays as |i− j| → ∞. Most of the time it should decay exponentially, and
the correlation length ξ is defined by

< φi;φj >=< φiφj > − < φi >< φj >∼ e−|i−j|/ξ

The Hamiltonian we have been considering above can be written as

H(φ) =
β

2

∑

<i,j>

(φi − φj)
2 +

∑

i

(
a

2
φ2

i + λφ4
i )

with a = −4λ. More generally we could consider this model for any choice
of β, a and λ. While it looks as if we have three parameters, we should keep
in mind that in the continuous model we can do a trivial change of variables,
φi → tφi, and so there are really only two parameters in the model. Two
models which are related by such a change of variables are essentially the
same model. In particular they have the same correlation length.

If λ is zero, then the Hamiltonian is just a quadratic function of φ. So
the integral is a Gaussian integral. For nonzero λ we can write the integral
as a perturbation of a Gaussian integral. Let φj be a Gaussian process with
covariance

∫

φjφk dµ = C(j, k)
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where C = (−β∆ + a)−1. Then the partition function is equivalent to

Z =

∫

exp(−λ
∑

j

φ4
j) dµ

One can write down a continuum version of this. First we are going to
change our notation somewhat. The continuum version of our interaction is

β

2

∫

(∇φ)2(x)ddx+

∫

[aφ(x)2 + λφ(x)4]ddx

where φ(x) is a function on R
d rather than the lattice. In quantum field

theory one wants to study these continuum models, and so it is common
even in the lattice case to denote the sites by x and the value of the field at
x by φ(x). The operators in continuum case often have integral kernels, so
instead of writing matrix elements as Cx,y we will denote them by C(x, y).

Exercise: Consider the Hamiltonian (1) with λ and β large. Impose bound-
ary conditions in which the fields outside the finite volume are fixed to be
+1. Carry out the Peierls argument to prove the expectation of the field at
the origin is close to 1, uniformly in the volume.

7.2 Renormalization group transformations

Renormalization group transformations may be defined for the continuous
spin models that are somewhat analagous to those we defined for the Ising
type models. For example, we could divide the lattice into 2 by 2 blocks and
define the block field for a block to be the sum of the four fields in the block.
The new interaction for the block spins is then obtained by integrating over
all configurations of the original field that are consistent with a fixed block
spin configuration. Label the blocks by α, the block fields by ψα and the
original fields by φα,i where i labels the sites within a block. Formally we
would have

exp[−H1(ψ)] =

∫

∏

α

δ(ψα − z
∑

i

φα,i) exp[−H(φ)]Dφ

where Dφ stands for the product of a copy of Lebesgue meaure for each field
φα,i. Note that we have included a parameter z in the δ function. This
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rescaling of the field (“field strength renormalization”) is necessary if the
transformation is to have a fixed point. As for the quasilinear transformations
for the Ising systems, we will need to choose the parameter z just right. After
computing H1(ψ) we would rescale the block lattice to make it into a unit
lattice.

Just as in the Ising models, this transformation “preserves the partition
function”.

∫

exp[−H1(ψ)]Dψ =

∫

[

∫

∏

α

δ(ψα − z
∑

i

φα,i)Dψ

]

exp[−H(φ)]Dφ

=

∫

exp[−H(φ)]Dφ

The above transformation is similar to the quasilinear transformations for the
Ising systems in that the correlation function of the renormalized system is
directly related to the correlation function of the original system. Work this

out. In particular the correlation length is reduced by the block length. Of
course, our definition of the renormalized Hamiltonian H1 has all the infinite
volume problem that we encountered with the Ising systems. The definition
of H1 makes sense if we start with a lattice model in a finite volume. One
then needs to show that an infinite volume limit can be taken.

There are lots of variations on the above transformation. For example
one can soften the delta function:

exp[−H1(ψ)] =

∫

∏

α

c(a) exp(−a[ψα − z
∑

i

φα,i]
2) exp[−H(φ)]Dφ

Here a is a parameter and c(a) is the constant defined by
∫ ∞

−∞

c(a) exp(−ax2)dx = 1

With measures that are defined in terms of Gaussian measures there is an-
other approach to defining renormalization group transformations. This is
the approach that we will use, but first we need some more Gaussian process
machinery.

7.3 Normal ordering

Next we want to define a procedure called normal ordering or Wick ordering.
It will prove useful when we look at the linearization of the renormalization
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group map about a Gaussian fixed point. Let φ(x) be a Gaussian process
with probability measure µ. The normal ordered polynomials : φ(x)n : are the
polynomials one obtains by applying the Gramm-Schmidt orthogonalization
procedure to the monomials φ(x)n. So : φ(x)n : is an nth order polynomial
in φ(x) and

∫

: φ(x)n : : φ(x)m : dµ = 0

if n 6= m. The polynomials are normalized so that the coeffecient of φ(x)n

in : φ(x)n : is 1. These polynomials are closely related to Hermite polyno-
mials (they are Hermite polynomials?) The operation of normal ordering is
extended to other functions by requiring that it be linear. For example, we
define

: eiφ(x) :=

∞
∑

n=0

1

n!
: φ(x)n :

We claim that
: eiφ(x) := e

1

2
C(x,x)eiφ(x)

More generally, we will show

: eitφ(x) := e
1

2
t2C(x,x)eitφ(x)

To prove this we need to show that the tn term in e
1

2
t2C(x,x)eitφ(x) is : φ(x)n :

/n!. Clearly this term is a polynomial in φ(x) whose highest order term

is φn(x). Thus all we need to show is that the tn term in e
1

2
t2C(x,x)eitφ(x)

is orthogonal to the sm term in e
1

2
s2C(x,x)eisφ(x) . Now a little computation

shows
∫

e
1

2
t2C(x,x)eitφ(x)e

1

2
s2C(x,x)eisφ(x) dµ = exp[−tsC(x, x)]

Clearly the expansion of the right side only contains terms tnsm with n = m,
and so the claim is proven.

The above result also gives a nice way to compute normal ordered mono-
mials. Since

: eitφ(x) := e
1

2
t2C(x,x)eitφ(x)

one can compute the normal ordered polynomials by differentiating with
respect to t a bunch of times and then setting t = 0. Normal ordering
depends on the covariance, but as we can see from the above the dependence
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on the covariance is rather simple.

: φn(x) :=

n
∑

k=0

an,kC(x, x)(n−k)/2φ(x)k

where the an,k are constants which do not depend on the covariance. In fact
they are the coeffecients of the Hermite polynomials.

∑n
k=0 an,kx

k is the nth
Hermite polynomial.

When we implement the renormalization group we will want to integrate
out some of the modes in our functional integrals. Gaussian integrals provide
a natural way to do this. Suppose that we have a covariance C(x, y) and it
may be written as a sum of two covariances

C(x, y) = C1(x, y) + C2(x, y)

If C1(x, y) is a valid covariance, then there is a Gaussian process φ1(x) with
this covariance. We denote the underlying measure by µ1. Likewise, there is
a Gaussian process φ2(x) with measure µ2 whose covariance is C2(x, y). Now
consider the product measure µ1 × µ2. The sums φ1(x) + φ2(x) are random
variables for this measure. Their characteristic function is easily computed

∫

exp[i
∑

t(x)(φ1(x) + φ2(x))]d(µ1 × µ2)

=

∫

exp[i
∑

t(x)φ1(x)]dµ1

∫

exp[i
∑

t(x)φ2(x)]dµ2

= exp[−
1

2

∑

x,y

t(x)t(y)C1(x, y)] exp[−
1

2

∑

x,y

t(x)t(y)C2(x, y)]

Thus φ1(x)+φ2(x) is a Gaussian process with covariance C1(x, y)+C2(x, y) =
C(x, y).

The operation of normal ordering depends on the underlying measure, or,
equivalently the covariance. When we need to make this dependence explicit
we will write : φ(x)n :C . Normal ordering has a nice property with respect
to integrating out part of the covariance.

Lemma: Let φ1(x) and φ2(x) be Gaussian processes with covariances C1

and C2 and measures µ1 and µ2. Then letting C = C1 + C2,
∫

: (φ1(x) + φ2(x))
n :C dµ2 =: φ1(x)

n :C1
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Proof:

∫

: exp[it(φ1(x) + φ2(x))] :C dµ2 = exp[
1

2
t2C(x, x)]

∫

exp[it(φ1(x) + φ2(x))]dµ2

= exp[
1

2
t2C(x, x) + itφ1(x)]

∫

exp[itφ2(x)]dµ2

= exp[
1

2
t2C(x, x) + itφ1(x) −

1

2
t2C2(x, x)]

= exp[
1

2
t2C1(x, x) + itφ1(x)]

= : exp[itφ1(x)] :C1

The result now follows by expanding both sides in powers of t.
Suppose that our original system is given by exp[−V (φ)]dµ(φ) where

µ has covariance C(x, y). We split the covariance into a short range and
long range part C(x, y) = Cs(x, y) + Cl(x, y). Let φs(x), µs and φl(x), µl

be Gaussian processes with covariances Cs and Cl respectively. If we only
integrate out φs, then the result will be a function of φl.

exp[−V1(φl)] =

∫

exp[−V (φs + φl)]dµs

After appropriate rescaling this will be our renormalization group transfor-
mation.

There are lots of ways to split the covariance into short and long range
parts. The most naive thing to do would be to let Cs(x, y) equal C(x, y)
when |x − y| is not large and equal zero otherwise. However, Cs and Cl

must both be positive definite, so this splitting cannot be used. When the
covariance is diagonal in momentum space, a natural way to do the splitting
is in momentum space. Let Ĉ(k) be the fourier transform of C(x, y). We
could let Ĉs(k) equal C(k) when k is large and equal 0 otherwise. The re-
sulting transformation is often called a momentum space RG transformation,
and it is these transformations that we are going to study. Note that the
transformation is not simply the map V → V1. Part of the interaction is
now encoded in the covariance and the covariance is changing. So we should
think of the above as a map from V, C into V1, Cl. (The rescaling in both V1

and Cl has yet to be done.)

Exercises:
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1. Define : exp(tφ(x)) : by normal ordering its power series term by term.
Show that

: etφ(x) := e−
1

2
t2C(x,x)etφ(x)

7.4 The Gaussian fixed point

We consider a continuum model with covariance C(x, y) which is given by

C(x, y) =
1

(2π)d

∫

exp[−ik · (x− y)]Ĉ(k)dk

Since we are in the continuum the integral is over all of R
d. We would like to

study the covariance Ĉ(k) = 1
k2+a

. We will modify it somewhat by assuming

that Ĉ(k) is supported in the unit sphere, i.e., Ĉ(k) is nonzero only if |k| ≤ 1.
This requires changing 1

k2+a
for |k| > 1, but such a change should not change

the long distance behavior of the covariance. We split this covariance as
C = Cl +Cs where Ĉl(k) = C(k)χ(|k| ≤ 1

2
) and Ĉs(k) = C(k)χ(|k| > 1

2
). So

Cl contains the long distance modes and Cs the short distance modes. We
let φl and φs be Gaussian processes with covariances Cl and Cs.

The renormalization group transformation will be to integrate out φs and
then rescale the field. There are two type of rescaling that must be done.
First, we need to rescale the momenta by a factor of 2. This will rescale the
sphere |k| ≤ 1

2
back to the unit sphere. This rescaling is the same as rescaling

distances by a factor of 1
2
. Second we need to rescale the field φl by a factor

of z, where z is some parameter which will need to be adjusted in order to
obtain a fixed point. These two rescalings imply that we should define the
“block field” ψ by φl(x) = z−1ψ(x/2). We need to choose the covariance of
ψ so that the covariance of z−1ψ(x/2) is Cl(x, y). Let C ′ be the covariance
of ψ. Then the covariance of z−1ψ(x/2) is z−2C ′(x/2, y/2). So we want

z−2C ′(x/2, y/2) = Cl(x, y)

or equivalently
z−2C ′(x, y) = Cl(2x, 2y)

and so

z−2C ′(x, y) =
1

(2π)d

∫

exp[−ik · (2x− 2y)]Ĉl(k)dk
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=
1

(2π)d

∫

exp[−ik · (2x− 2y)]χ(|k| ≤
1

2
)Ĉ(k)dk

= 2−d 1

(2π)d

∫

exp[−ik · (x− y)]χ(|k| ≤ 1)Ĉ(k/2)dk

where we did a simply change of variables in the last line. Thus we have

Ĉ ′(k) = z22−dχ(|k| ≤ 1)Ĉ(k/2) (2)

Our renormalization group transformation is thus given by C, V → C ′, V ′

where C ′ is defined by the above equation and V ′ is defined by

exp[−V ′(ψ)] =

∫

exp[−V (z−1ψ(x/2) + φs(x))]dµs (3)

The notation V (z−1ψ(x/2) + φs(x)) means that wherever we see a φ(x) in
V (φ) we replace it by z−1ψ(x/2)+φs(x). For example, if V (φ) =

∫

φ(x)4dx,
then V (z−1ψ(x/2) + φs(x)) =

∫

[z−1ψ(x/2) + φs(x)]
4dx.

All of the headaches that we had with the Ising system are still present.
There is an infinite volume limit to be taken. The new interaction V ′ will be
much more complicated that the original interaction. In particular, it will
not be local, i.e., it will contain terms like

∫

ψ(x)ψ(y)k(x, y)dxdy. There is
one advantage to the present setup. Note that V = 0 does not imply that
our system is trivial. A Gaussian measure can have a nonzero correlation
length, even an infinite one. Thus a fixed point of the RG which had V = 0
might be quite interesting. (In the Ising systems H = 0 is a fixed point,
but a very trivial one.) Furthermore, we might hope to study our new RG
transformation by perturbing around V = 0. (There is no analog of this in
the Ising systems since any small H will yield a high temperature system.)

To look for a Gaussian fixed point we simply need to see if (2) has a fixed
point. (Obviously, if V is zero then V ′ is also zero). There are two simple
fixed points. The first is to simply let Ĉ(k) = χ(|k| ≤ 1) and take z = 2d/2.
If Ĉ(k) were simply the function 1 then the covariance would be the identity
operator. This yields uncoupled fields and a trivial model, in particular an
infinite correlation length. Changing the covariance to χ(|k| ≤ 1) will only
change the short distance behavior. It will still be a trivial model. This fixed
point is called the “high temperature” fixed point. The second fixed point is
to let

Ĉ(k) = k−2χ(|k| ≤ 1)

z = 2(d−2)/2
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Actually, there is nothing special about k−2 here. Choosing z appropriately,
|k|p is a fixed point for any power. These fixed points are important if one
allows interactions with a power law decay.

For the rest of this section we will take z = 2(d−2)/2 so that the transfor-
mation has the k−2 fixed point. We want to study the linearization of our
transformation about the Gaussian fixed point. C ′ only depends on C, not
on V and the map C → C ′ is already a linear map. Linearizing C, V → V ′

about V = 0 is easy:

V ′(ψ) =

∫

V (z−1ψ(x/2) + φs(x))dµs

We have not said anything about what sort of space the V should belong to
and we are not going to now. We will simply look at what this linearization
does to local polynomial interactions, i.e., interactions of the form

∫

φ(x)ndx.
Equivalently, we can use the normal ordered interactions

∫

: φ(x)n : dx. The
normal ordering here is with respect to the covariance C. The lemma ?? said

∫

: [φl(x) + φs(x)]
n : dµs =: φl(x)

n :Cl

Since φl(x) = z−1ψ(x/2) this implies

∫

: [φ(x)]n : dµs = z−n : ψ(x/2)n :C′

We have used the fact that : φl(x)
n :Cl

= z−n : ψ(x/2)n :C′ , which follows
easily from ??. Thus the linearized map sends

∫

: φ(x)n : dx into z−n
∫

:
ψ(x/2)n : dx which after a trivial change of variables becomes z−n2d

∫

:
ψ(x)n : dx. Thus the normal ordered monomials are eigenvectors of the
linearized transformation with eigenvalue z−n2d. Since z = 2(d−2)/2, the
eigenvalues are 2d−n(d−2)/2.

For the quadratic interaction the eigenvalue is 22 for all dimensions. Thus
there is always at least one eigenvalue greater than one. If we start with a
V (φ) that is even then V ′ will be even. So we restrict our attention to the
even subspace for the moment. The eigenvalue of the quartic interaction
(n = 4) is 24−d. This is less than 1 when d > 4. So when d > 4 the Gaussian
fixed point has only one eigenvalue greater than one in the even subspace.
This is the same setup as for the Ising models. The eigenvalue greater than
one should be 2yT , so we find yT = 2. This yields ν = 1/yT = 1/2, and
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α = 2 − d/yT = 2 − d/2. The value for ν is correct. The value for α is
negative since d > 4, and this is wrong. One can go on and consider odd
interactions, find another eigenvalue of the linearization that is greater than
one and then compute the critical exponents β, γ and δ. The results are all
wrong. The explanation for these wrong values is somewhat involved. We
will return to it later. The buzz word is “dangerous irrelevant variables.”

So far we have only considered the action of the linearization on local
polynomials in the field. Next we consider a particular interaction that is
not of this form, namely,

∫

∇φ(x)2dx

There are at least two ways to make sense of ∇φ(x). First, if the covariance
is nice enough, one can prove that there is a version of the Gaussian process
for which the random variable is differentiable function of x with probability
one. Second, the formal calculation

∇φ(x) =

∫

δ(x)∇φ(x)dx = −

∫

φ(x)∇δ(x)dx

suggest that we define ∇φ(x) to be φ(v) where v is the element in the Hilbert
space of distributions given by −∇δ(x)dx. (Actually this is a triple of ele-
ments in the Hilbert space since ∇ is a vector.) The action of the linearized
RG is

∫ ∫

[∇φl(x) + ∇φs(x)]
2dxdµs =

∫

[∇φl(x)]
2dx+ constant

= z−2

∫

[∇ψ(x/2)]2dx+ constant

= z−22d2−2

∫

[∇ψ(x)]2dx+ constant

In the last equality we did the change of variables x → 2x, but obtained an
extra factor of 2−2 from the gradient. Using our choice of z, z−22d2−2 = 1.
Thus this interaction has eigenvalue 1. This appears to be bad news in view
of chapter 2, but this eigenvalue is really an artifact of the continuous spin
nature of the model. Recall that we can always do a rescaling of the fields,
i.e., send all φ(x) to αφ(x) without changing the physics of the model in any
significant way. In particular, given a fixed point of the RG we must in fact
have a one parameter family of fixed points. We can formally think of the
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RG map as a map H → H ′ where H = C−1 + V . Suppose H(φ) is fixed
point so

RH(φ) = H(φ)

Then
RH(αφ) = H(αφ)

Differentiating with respect to α and then setting α = 1 we find that the
interaction H ′ is an eigenvector of the linearization with eigenvalue 1 where

H ′(φ) =
d

dα
|α=1H(αφ)

The Gaussian fixed point we have is homogeneous in the field, so one finds
that H ′ is just the RG fixed point

∫

(∇φ)2(x). We can remove this eigenvalue
of 1 by restrict the space of interactions to a subspace of codimension one by
placing a restriction on the interaction that removes the freedom to rescale
the fields. For example we could require that the coeffecient of k2 in the
covariance be 1.

We now consider nonlocal interactions, first from a physicist point of view.
For simplicity we consider only interactions that are quadratic in the field,
e.g.,

∫ ∫

φ(x)φ(y)k(x− y)dxdy

Integrating out the φs yields

∫ ∫ ∫

[φl(x) + φs(x)][φl(y) + φs(y)]k(x− y)dxdydµs

=

∫ ∫

φl(x)φl(y)k(x− y)dxdy + constant

= z−2

∫ ∫

ψ(x/2)ψ(y/2)k(x− y)dxdy + constant

= z−222d

∫ ∫

ψ(x)ψ(y)k(2(x− y))dxdy + constant

We are going to ignore the constant term. If we had used a normal ordered
quadratic interaction the constant term would not be there. Pluging in our
choice of z the result is of the same form as the interaction we started with
except that k(x) is replaced by 22+dk(2x). In momentum space this is the
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same as replacing k̂(p) by 22k̂(p/2). The local quadratic interaction is ob-
tained here by taking k(x) to be a delta function. Then k̂ is a constant
function and is trivially an eigenvector for the map

k̂(p) → 22k̂(p/2)

with eigenvalue 22 as we saw before. Any monomial in the components
of p will be an eigenfunction of this map with eigenvalue 22 − m where
m is the degree of the monomial. If k(x) is rotationally invariant, then
k̂(p) will be as well. The lowest order rotationally invariant nonconstant
monomial is |p|2. Its eigenvalue is 1. But this interaction is nothing but
our old friend ∇φ(x)2. All the other rotationally invariant monomials have
m > 2 and so an eigenvalue less than 1. We have only considered quadratic
functions of the field. Higher order monomials in the field can be treated in
the same way. From the above we can see that the eigenvalues of the nonlocal
interactions will be of the form 2−m times the eigenvalue of the corresponding
local interaction. Thus when the local φ4 interaction has eigenvalue less than
1, i.e., when d > 4 the nonlocal φ4 interactions will have eigenvalues less than
1.

Monomials in p in momentum space correspond to derivatives of the delta
function back in position space. This is not the typical sort of nonlocal in-
teraction that arises in perturbation theoretic implementations of the RG.
Interactions of the form

∫ ∫

φ(x)φ(y)k(x− y)dxdy where k(x) is a nice func-
tion with rapid decay are what we will encounter. For a proper treatment
of these nonlocal interactions we need to introduce a proper space of inter-
actions, i.e., define a norm, and study the linearized RG map on this space.
This has been done rigorously in some models. The only remarks we will
make here it that while it is nice to obtain eigenfunctions and eigenvalues as
we did in the above highly formal calculation, there is no reason this is will
happen when we work in a proper space of interactions. The spectrum make
be continuous, etc. However, this is not a problem apriori. All we really
want to know is that when we remove a finite number of directions from the
linearized map corresponding to the eigenvalues greater than or equal to one,
the remainder of the map is a contraction.

We end this section with some of the standard buzz words in renormal-
ization group. Interactions that have an eigenvalue greater than one are said
to be “relevant”, while those with eigenvalue less than one are said to be
“irrelevant.” It is also possible to have an eigenvalue equal to one. Such
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an interaction is said to be “marginal.” For example, φ4 is marginal in four
dimensions. ∇φ2 is marginal in all dimensions, but this is just a reflection
of a trivial symmetry in the model. Nontrivial marginal operators like φ4 in
d = 4 are interesting since they typically produce logarithmic corrections to
the power law divergences of various quantities at the critical point. We will
return to this later.

Exercises:

1 (this is a straightforward) The renormalization group transformation of
this section split momentum space into |k| ≤ 1

2
and 1

2
< |k| ≤ 1. We could

just have well split it into |k| ≤ 1/l and 1/l < |k| ≤ 1 for any l greater
than 1. Repeat the calculations of this section for this transformation. The
eigenvalues of the linearization will be different. However, you should still
find that the quartic term changes stability at d = 4. This transformation
rescales lengths by a factor of l, so to find yT we should write the eigenvalue
of the quadratic interaction as lyT . The yT you find should not depend on l
and so should be the value we found, namely 2.

7.5 A Non-gaussian fixed point

We now turn our attention to d < 4. We saw in the last section that in the
space of even interactions the Gaussian fixed point has unstable directions
in addition to the always unstable φ2 interaction. So we do not expect the
Gaussian fixed point to describe the critical behavior anymore and we should
look for a new non-Gaussian fixed point. The method for doing this is known
as the ε-expansion. ε is defined to be 4 − d. The idea is that if d < 4 and ε
is small, then the non-Gaussian fixed point should be close to the Gaussian
fixed point. So we can try to compute it by perturbation theory around
V = 0. Of course, the model is only defined for integer d, so to take ε small
we will need to extend the definition to noninteger dimension. To the lowest
order in ε this is easy. The eigenvalues we found depend on d in a way that
immediately generalizes to noninteger d. (Mathematically this doesn’t make
any sense. Given a function defined on the integers there is no unique way to
extend in to noninteger values.) At higher orders in ε the game is the same
although the functions of d that appear are more complicated. For example
integrals in momemtum space will produce the surface area of the sphere
in d dimensions. There is a formula for this which contains among other
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things the gamma function with the dimension entering in the argument.
The gamma function is defined for noninteger values.

As we said above, even if we start with a simple interaction like
∫

φ(x)4,
the new interaction V ′ will contain all sorts of terms including higher powers
of φ and nonlocal terms. The nice thing about the ε expansion is that to
lowest order in ε, the fixed point will only contain local quadratic and quartic
terms. (This is not obvious apriori.) The RG map to lowest order in ε will
be a map in a space of only two parameters. The calculations needed are
somewhat involved. In the end many of the terms don’t matter. We are going
to first do the calculation by assuming that various terms can be neglected
because they are higher order in ε. We will later go back and try to justify
this.

We will compute V ′ by doing perturbation theory around V = 0. For-
mally we obtain this perturbation theory as follows. We introduce a param-
eter t in front of V and then use (3) to compute V ′ as a power series in t.
V ′ = V1t + V2t

2 + · · ·.

Vn = −
1

n!

dn

dtn
|t=0 log

∫

exp[−tV (z−1ψ(x/2) + φs(x))]dµs

Of course the first term in the expansion just gives the linearization we
considered before and it cannot produce a non-Gaussian fixed point by itself.
We will need the first two terms in this expansion.

V1 =

∫

V (z−1ψ(x/2) + φs(x))dµs

V2 = −
1

2

d2

dt2
|t=0 log

∫

exp[−tV (z−1ψ(x/2) + φs(x))]dµs (4)

=
1

2

d

dt
|t=0

∫

V (z−1ψ(x/2) + φs(x)) exp[−tV (z−1ψ(x/2) + φs(x))]dµs
∫

exp[−tV (z−1ψ(x/2) + φs(x))]dµs

(5)

= −
1

2

∫

V 2(z−1ψ(x/2) + φs(x))dµs +
1

2
[

∫

V (z−1ψ(x/2) + φs(x))dµs]
2(6)

taking the log removes the connected diagrams

As we said before, our computation to lowest order in ε will take place
in a two dimensional space of interactions — a local quadratic interaction
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and a local quartic interaction. We can put the quadratic interaction in the
covariance. So we consider a covariance of the form

Ĉ(k) = (k2 + a)χ(|k| ≤ 1)

and a V of the form

V = λ

∫

φ(x)4dx

We leave it as an easy calculation for the reader to check that the renormal-
ized covariance is

Ĉ ′(k) = (k2 + 4a)χ(|k| ≤ 1)

However, this does not mean that the renormalized a is simply 4a. The
renormalized V will contains a quadratic term and we must move this term
into the covariance. We will denote the renormalized a and λ by a′ and λ′.
So far we have

a′ = 4a+ terms to be computed

λ′ = terms to be computed

The linear term
∫

V (z−1ψ(x/2) +φs(x))dµs is easy to compute. Keeping
in mind that the integral of an odd power of φs vanishes, it is

∫

V (φl(x) + φs(x))dµs = λ

∫

dx

∫

[φl(x) + φs(x)]
4dµs

= λ

∫

dx

∫

[φl(x)
4 + 6φl(x)

2φs(x)
2 + φs(x)

4]dµs

= λ

∫

dx[φl(x)
4 + 6φl(x)

2Cs(x, x) + 3Cs(x, x)
3]

= λ

∫

dx[z−4ψ(x/2)4 + 6z−2ψ(x/2)2Cs(x, x) + 3Cs(x, x)
3]

= λ

∫

dx[z−42dψ(x)4 + 6z−22dψ(x)2Cs(2x, 2x) + 3Cs(x, x)
3]

In the last equation we did a change of variables in the x integral. The last
term in the above is just a constant and can be thrown out. The coeffecient of
the ψ4 term is λz−42d = 24−d = 2ε. The coeffecient of the ψ2 term contains
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Cs(2x, 2x) = Cs(0, 0). It is crucial to note that this depends on a. This
quantity is given by an integral in momentum space. We define

A(a) = Cs(0, 0) =
1

(2π)d

∫

1

2
≤|k|≤1

1

k2 + a
dk

Then the coeffecient of the ψ2 term is 6z−22dA(a)λ = 24A(a)λ. We need to
move this term into the covariance. The weight for the Gaussian measure
contains −1

2
C−1. There is also a minus sign in front of V ′ in the exponential,

so this term contributes 48A(a)λ to the renormalized a. We now have

a′ = 4a+ 48A(a)λ+ terms to be computed

λ′ = 2ελ+ terms to be computed

Next we consider the second order terms in the perturbation theory,i.e.,
V2. We must compute

−
1

2

∫

V 2(φl(x) + φs(x))dµs +
1

2
[

∫

V (φl(x) + φs(x))dµs]
2

This will contain a variety of terms including terms that are sixth and eighth
order in ψ. We will ignore these terms and only compute the second and
fourth order terms. Eq. (6) for V2 contains two terms. The first term
involves the integral

∫

[φl(x) + φs(x)]
4[φl(y) + φs(y)]

4dµs

When we expand this out, the terms that are fourth order in φl are

φl(y)
4

∫

φs(x)
4dµs + φl(x)

4

∫

φs(y)
4dµs + 36φl(x)

2φl(y)
2

∫

φs(x)
2φs(y)

2dµs

+16φl(x)φl(y)
3

∫

φs(x)
3φs(y)dµs + 16φl(x)

3φl(y)

∫

φs(x)φs(y)
3dµs

Now consider the second term in V2.
∫

[φl(x) + φs(x)]
4dµs

∫

[φl(y) + φs(y)]
4dµs
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The terms in this that are fourth order in ψ are

φl(y)
4

∫

φs(x)
4dµs + φl(x)

4

∫

φs(y)
4dµs + 36φl(x)

2φl(y)
2

∫

φs(x)
2µs

∫

φs(y)
2dµs

+16φl(x)φl(y)
3

∫

φs(x)
3dµs

∫

φs(y)dµs + 16φl(x)
3φl(y)

∫

φs(x)dµs

∫

φs(y)
3dµs

Some of these terms just cancel a term in the previous mess. We find

−
1

2

∫

V 2(φl(x) + φs(x))dµs +
1

2
[

∫

V (φl(x) + φs(x))dµs]
2

= −
1

2
λ2

∫

dx

∫

dy[36φl(x)
2φl(y)

2(

∫

φs(x)
2φs(y)

2dµs −

∫

φs(x)
2dµs

∫

φs(y)
2dµs)

+32φl(x)φl(y)
3

∫

φs(x)
3φs(y)dµs]

The last term comes from combining two terms using the symmetry in x
and y. The integrals are just integrals of polynomials in φs which are easily
computed.

∫

φs(x)
2φs(y)

2dµs −

∫

φs(x)
2dµs

∫

φs(y)
2dµs = 2Cs(x, y)

2

∫

φs(x)
3φs(y)dµs = 3Cs(x, x)Cs(x, y)

Note that both of these answers decay exponentially fast as |x−y| grows. So
even though we are obtaining nonlocal interactions, e.g., terms like φl(x)

2φl(y)
2

rather than φl(x)
4, they are not too badly nonlocal. We now cheat and re-

place our nonlocal interactions by local ones, i.e.,

φl(x)
2φl(y)

2 → φl(x)
4

φl(x)φl(y)
3 → φl(x)

4

(We will justify this later.) This yields

−
1

2
λ2

∫

V 2(φl(x) + φs(x))dµs +
1

2
[

∫

V (φl(x) + φs(x))dµs]
2

= −
1

2

∫

dx

∫

dy[36φl(x)
42Cs(x, y)

2 + 32φl(x)
43Cs(x, x)Cs(x, y)]
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The second term contains
∫

dyCs(x, y) = Ĉs(0) = 0. For the first term we
define

B(a) =

∫

dyCs(0, y)
2 =

1

(2π)d

∫

Ĉs(k)
2dk =

1

(2π)d

∫

1

2
≤|k|≤1

1

(k2 + a)2
dk

Then we are left with

−36B(a)λ2

∫

dxφl(x)
4 = −36B(a)

∫

dxz−4ψ(x/2)472λ2

= −36B(a)z−42dλ2

∫

dxψ(x)4 = −36B(a)2ελ2

∫

dxψ(x)4

We now have

a′ = 4a+ 48A(a)λ+ terms to be computed

λ′ = 2ελ− 36B(a)2ελ2

So far we have only computed the contribution of the second order per-
turbation theory to the quartic part of V ′. We are neglecting higher powers
of ψ, but we still need to compute the quadratic part. It will turn out that
this part will not matter to lowest order in ε. The contribution to a′ will
obviously contain a factor of λ2, so we will merely include a O(λ2) in our
equations.

a′ = 4a+ 48A(a)λ+ O(λ2)

λ′ = 2ελ− 36B(a)2ελ2

This may seem a bit puzzling. We went to a lot of trouble to compute the
O(λ2) term in λ′, but we are not bothering to compute the corresponding
term in a′. The reason will become apparent in a moment when we look for
a fixed point of the above equations.

The next step is to look for a fixed point of our renormalization group
equations (7). So we want a solution of

a = 4a+ 48A(a)λ+O(λ2)

λ = 2ελ− 36B(a)2ελ2

Since ε is small, 2ε ≈ 1 + ε log 2. In the λ2 term in the second equation we
might as well replace 2ε by 1 and B(a) by B(0). Thus the second equation
becomes

0 = ελ log 2 − 36B(0)λ2
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Denoting the fixed point by a?, λ?, we have

λ? =
ε log 2

36B(0)

Plugging this into the first equation we have

a = 4a+
4

3
ε log 2

A(a)

B(a)
+O(λ2)

The O(λ2) term is O(ε2) and so contributes to a only at second order in ε.
We can also take a = 0 in the functions A(a) and B(a) since the resulting
error in the equation is second order in ε. Thus we find

a? = −
4

9
ε log 2

A(0)

B(0)

Now we see the crucial difference between the a and λ equations. The linear
part of the λ equation is λ′ = (1+ ε log 2)λ. So the total factor in front of the
λ is ε log 2 and to find λ? to first order in ε we must include terms of second
order in ε2 in this equation. In the a equation the factor in front of a ends
up being just 3, so a is determined by the other terms in the equation that
are first order in ε.

Having found a nontrivial fixed point we compute the linearization of
our two parameter RG map about it. This just amounts to computing the
Jacobian of (7). We only need to keep terms up to first order in ε.

∂a′

∂a
= 4 + 48A′(0)λ

∂a′

∂λ
= 48A(0)

∂λ′

∂a
= 0

∂λ′

∂λ
= 1 + ε log 2 − 72B(0)λ

Thus the two by two matrix for the linearization will be upper triangular
(or lower triangular ??) and so the eigenvalues are just the diagonal entries.

At the fixed point the diagonal entries are 4 + 4
3
ε log 2A′(0)

B(0)
and 1 − ε log 2.

When ε = 0 they are 4 and 1 as they should be. For ε > 0, the smaller
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eigenvalue goes below 1 so our new non-Gaussian fixed point has only one
unstable direction. We leave it as an exercise to compute that A′(0)

B(0)
= −1.

Thus the eigenvalue greater than one is 4− 4
3
ε log 2. Setting this equal to 2yT

we find (to first order in ε),

yT = 2 −
1

3
ε

and so

ν =
1

yT
=

1

2
+

1

12
ε

We can compute a second critical exponent using yT ,

α = 2 −
d

yT
= 2 −

4 − ε

2 − 1
3
ε

=
1

6
ε

So far we have only considered even interactions. By considering odd
interactions as well we can compute yh to first order in ε. We leave this as
an exercise for the reader. One finds that yh = 3 − ε/2 and so

γ = 1 +
1

6
ε

β =
1

2
−

1

6
ε

δ = 3 + ε

In our search for a non-Gaussian fixed point we used the same choice
of z (z = 2(d−2)/2) then we did for the Gaussian fixed point. This was not
justified. We should have expected to need a different rescaling of the field in
order to obtain a non-Gaussian fixed point. The fact that this choice worked
implies that the correct choice of z is the same as the Gaussian one to first
order in ε. This implies something about the critical exponent η. Recall that
η describes the power law decay of the correlation function at the critical
point.

< φ(x)φ(y) >∼
c

|x− y|d−2+η

where < > denotes expectation with respect to the probability measure
Z−1e−V (φ)dµ. We need to study the behavior of the correlation function <
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φ(x)φ(y) > under the renormalization group transformation We have φ(x) =
φs(x) + z−1ψ(x

2
) and every measure in sight is an even measure, so

< φ(x)φ(y) >=< φs(x)φs(y) > +z−2 < ψ(
x

2
)ψ(

y

2
) > (7)

The first term should decay exponentiall in x−y since the covariance of φs(x)
does. (This is a bit subtle. We need to be sure there is nothing in V which
will introduce small momenta.) Now

< ψ(
x

2
)ψ(

y

2
) >= Z−1

∫ ∫

ψ(
x

2
)ψ(

y

2
) exp[−V (φs(x) + z−1ψ(

x

2
))]dµsdµ

′

where µ′ is the measure for the process ψ. (So µ′ is µl except for some
rescaling.) Doing the dµs integral first and keeping in mind the definition of
V ′ we have

< ψ(
x

2
)ψ(

y

2
) >= Z−1

∫

ψ(
x

2
)ψ(

y

2
) exp[−V ′(ψ(x))]dµ′ =< ψ(

x

2
)ψ(

y

2
) >′

where < >′ denotes expectation with respect to the probability measure
z−1e−v′dµ′. If we are at a fixed point

< ψ(
x

2
)ψ(

y

2
) >′∼

c

|x
2
− y

2
|d−2+η

Thus (7) can hold only if z−22d−2+η = 1. Since z = 2(d−2)/2, this implies that
η = 0 to first order in ε.

We end this section by going back and justifying the various terms that
we threw out in our derivation of the renormalization group equations to
first order in ε. We are not going to prove anything, but will instead give
a self consistency argument. We assume that the only terms in the fixed
point to first order in ε are those that we have already found. We then
argue that the neglected terms will not change this fixed point to first order
in ε. The equation for λ is special because the eigenvalue associated with
φ4 is close to 1. The fixed point value of λ is determined by the terms of
order O(ε2) in the equation. We have already computed everything that can
contribute from the second order terms in the perturbation theory. Higher
order terms in the perturbation theory do not contribute to second order in
ε. There are however terms from the first order in perturbation theory that
might contribute. For example, the terms

∫

φ6(x)dx and
∫

φ8(x)dx could
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have O(ε2) coeffecients and these terms will contribute to λ in first order
perturbation theory.

We claim that in fact the
∫

φ6(x)dx term is O(ε3). The only contribution
to φ6(x) that is O(ε2) comes from second order perturbation theory. By
calculations similar to the above we find that the only nonzero term is

∫

dx

∫

dyφ3
l (x)φ

3
l (y)

∫

φs(x)φs(y)dµs =

∫

dx

∫

dyφ3
l (x)φ

3
l (y)Cs(x, y)

The local part of this is
∫

dxφ6
l (x)

∫

dyCs(x, y), and we have already seen
that

∫

dyCs(x, y) = 0. Thus there are no O(ε2) contributions to the local φ6(x)
interaction.

The only potential O(ε2) contribution to the local φ8 interaction is from
second order perturbation theory. This contribution is in fact zero since it
comes from a nonconnected interaction. MORE ????????

The basic idea behind the ε expansion is that when ε is small the non-
Gaussian fixed point is very close to being Gaussian. Thus it may be studied
by expansions around Gaussian measures. This strategy applies in a lot of
other setting. For example instead of the Ising model we can consider a model
in which the spin at each site takes values on the n− 1 dimensional sphere.
This is often called the O(n) model since that is the relevant symmetry group.
The field theory analog is to replace φ(x) by a vector of fields φ1(x), · · · , φn(x).
The critical exponents of this model depend on n as well as the dimension d.
There is again a Gaussian fixed point and it becomes unstable in less than
four dimensions for all n. The non-Gaussian fixed point that describes the
critical theory for d < 4 is close to being Gaussian when n is large. Thus one
can take d = 3 and do a “1/n” expansion in lieu of the ε expansion.

Another model which has an ε expansion without going to noninteger
dimensions is the Ising model with a power law interaction. The Hamiltonian
is of the form

H =
∑

i,j

σiσj

|i− j|d+p

where p is a parameter. A slowly decaying interaction is like putting the
nearest neighbor model in higher dimensions. If p < d/2 then a Gaussian
fixed point describes the critical phenomena. For p > d/2 a non-Gaussian
fixed point takes over. One can then use ε = p − d/2 as an expansion
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parameter. (Note: the Gaussian fixed point here is not 1/k2 but rather 1/k
to some other power. Exercise ??????)

Exercises:

1 Show that A′(0)
B(0)

= −1.

2 This is a continuation of exercise 1 from the previous section. Split the
momenta into |k| ≤ 1/l and 1/l < |k| ≤ 1 where l > 1. The calculations in
this section used l = 1

2
. Repeat these calculations for general l. In particular

compute yT to first order in ε. The answer should be l independent and equal
to the result we got in this section.

3 Compute the result of applying the linearized RG transformation to the
interaction

∫

φ(x). You should find that yh = 3 − ε/2. Show that this leads
to the results given for β, δ and γ.
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