Math 563 - Fall 14 - Homework 1

1. Let E_{n} be a sequence of events. We define a new event :

$$
\left\{\omega: \exists \text { infinite } I \subset \mathbb{N} \text { such that } i \in I \Rightarrow \omega \in E_{i}\right\}
$$

This event is sometimes written E_{n} i.o., where i.o. stands for "infinitely often."
(a) Show that E_{n} i.o. $=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_{k}$
(b) Prove that if $\sum_{n=1}^{\infty} P\left(E_{n}\right)<\infty$, then $P\left(E_{n}\right.$ i.o. $)=0$. This is sometimes called the "easy half" of the Borel Cantelli lemma.
2. Let X be a simple random variable on a probability space (Ω, \mathcal{F}, P). (This means that the range of X is finite.) Let $c_{1}, c_{2}, \cdots, c_{n}$ be the values that X takes on. Let $p_{j}=P\left(X=c_{j}\right)$. Let μ_{X} be the distribution of X. Give an explicit description of μ_{X} in terms of the c_{j} and p_{j}. (This is not a hard problem.)
3. Let X be a real valued function on Ω and let $\sigma(X)$ be the σ-field generated by the sets $X^{-1}(B)$ where B is a Borel set in \mathbb{R}. (This is the smallest σ-field with respect to which X is measurable.) Let Y be a real valued function on Ω. Prove that Y is measurable with respect to $\sigma(X)$ if and only if there is a measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $Y=f(X)$. This is problem 2.8 in Durrett. For a hint look at problem 2.7 or 2.9.
4. We flip a fair coin infinitely many times. Let X_{n} be 1 if the nth flip is heads, and 0 if the nth flip is tails. The sample space Ω consists of all sequences of heads and tails. X_{n} is a real valued function on Ω. In this problem we assume that there is a σ-field \mathcal{F} and a probability measure P such that X_{n} is a random variable and the probability measure agrees with your intiution. (We will eventually prove such an \mathcal{F} and P exist.) Define

$$
X=\sum_{n=1}^{\infty} \frac{X_{n}}{2^{n}}
$$

Note that $0 \leq X \leq 1$. Find the distribution μ_{X} of X. Hint: find $P(X \in E)$ when E is an interval of the form $\left((k-1) / 2^{n}, k / 2^{n}\right)$ for integers k and n.
5 . Let X_{n} be as in the last problem. Now define

$$
Y=\sum_{n=1}^{\infty} \frac{2 X_{n}}{3^{n}}
$$

NB: It is 3^{n} in the denominator, not 2^{n}.
(a) Prove that the distribution function F_{Y} is continuous.
(b) Prove that F_{Y} is differentiable a.e. with the derivative equal to 0 a.e. Hint: prove that F_{Y} is constant on the complement of the Cantor set.
(c) Let μ_{Y} be the distribution of Y. Let m be Lebesgue measure on the real line. Prove that μ_{Y} and m are mutually singular. This means that there is a Borel set A with $m(A)=0$ and $\mu_{Y}\left(A^{c}\right)=0$.

