Math 563 - Fall 14 - Homework 1

1. Let E_n be a sequence of events. We define a new event :

 $\{\omega : \exists infinite \ I \subset \mathbb{N} \ such that \ i \in I \Rightarrow \omega \in E_i\}$

This event is sometimes written $E_n i.o.$, where *i.o.* stands for "infinitely of-ten."

(a) Show that $E_n i.o. = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$

(b) Prove that if $\sum_{n=1}^{\infty} P(E_n) < \infty$, then $P(E_n i.o.) = 0$. This is sometimes called the "easy half" of the Borel Cantelli lemma.

2. Let X be a simple random variable on a probability space (Ω, \mathcal{F}, P) . (This means that the range of X is finite.) Let c_1, c_2, \dots, c_n be the values that X takes on. Let $p_j = P(X = c_j)$. Let μ_X be the distribution of X. Give an explicit description of μ_X in terms of the c_j and p_j . (This is not a hard problem.)

3. Let X be a real valued function on Ω and let $\sigma(X)$ be the σ -field generated by the sets $X^{-1}(B)$ where B is a Borel set in \mathbb{R} . (This is the smallest σ -field with respect to which X is measurable.) Let Y be a real valued function on Ω . Prove that Y is measurable with respect to $\sigma(X)$ if and only if there is a measurable function $f : \mathbb{R} \to \mathbb{R}$ such that Y = f(X). This is problem 2.8 in Durrett. For a hint look at problem 2.7 or 2.9.

4. We flip a fair coin infinitely many times. Let X_n be 1 if the *n*th flip is heads, and 0 if the *n*th flip is tails. The sample space Ω consists of all sequences of heads and tails. X_n is a real valued function on Ω . In this problem we assume that there is a σ -field \mathcal{F} and a probability measure Psuch that X_n is a random variable and the probability measure agrees with your intiution. (We will eventually prove such an \mathcal{F} and P exist.) Define

$$X = \sum_{n=1}^{\infty} \frac{X_n}{2^n}$$

Note that $0 \le X \le 1$. Find the distribution μ_X of X. Hint: find $P(X \in E)$ when E is an interval of the form $((k-1)/2^n, k/2^n)$ for integers k and n. 5. Let X_n be as in the last problem. Now define

$$Y = \sum_{n=1}^{\infty} \frac{2X_n}{3^n}$$

NB: It is 3^n in the denominator, not 2^n .

(a) Prove that the distribution function F_Y is continuous.

(b) Prove that F_Y is differentiable a.e. with the derivative equal to 0 a.e. Hint: prove that F_Y is constant on the complement of the Cantor set.

(c) Let μ_Y be the distribution of Y. Let m be Lebesgue measure on the real line. Prove that μ_Y and m are mutually singular. This means that there is a Borel set A with m(A) = 0 and $\mu_Y(A^c) = 0$.