
Math 563 - Fall 14 - Homework 2

1. (from Durrett) Suppose EY = 0 and the variance σ2 of Y is finite. Let
a > 0. Prove

P (Y ≥ a) ≤ σ2

σ2 + a2

Hint: apply Chebyshev with φ(y) = (y+ b)2 and optimize your result over b.

2. One of the hypotheses of the monotone convergence theorem is that all
the random variables Xn are non-negative. Prove that the conclusion of the
theorem is true without this hypothesis if we assume that E|X1| < ∞.

3. Let Xn be a sequence of RV’s which converges to a random variable X
a.s. Let F be a closed subset of R which does not contain the origin. Prove
that

lim
n→∞

P (|Xn −X| ∈ F ) = 0

Hint: use continuity of P .

4. (from Durrett) Let X1, X2, · · · , Xn be RV’s and suppose that the distri-
bution of (X1, X2, · · · , Xn) is absolutely continuous with respect to Lebesgue
measure on R

n and the Radon-Nikodym derivative is g1(x1)g2(x2) · · · gn(xn)
where the gi are non-negative measurable functions but need not have inte-
gral 1. Prove X1, X2, · · · , Xn are independent.

5. (from Durrett) Let Ω = (0, 1), F be the Borel sets in (0, 1), and let P be
Lebesgue measure. Define RV’s by

Xn(ω) =

{

0 if [2nω] is even
1 if [2nω] is odd

where [x] is the largest integer less than or equal to x. Prove that {Xn}∞n=1
are

independent random variables. Note that this gives a rigorous construction
of the probability space for flipping a fair coin infinitely many times.

The change of variables theorem says if X is a random variable and f a
real-valued measurable function on the real line (with some condition on f),
then

E[f(X)] =

∫

R

f(x) dµX

where µX is the distribution of X. The point of the next two problems is to
get more explicit formulae that are amenable to computation in the cases that
X is discrete or has a density.
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6. Let X be a discrete real-valued random variable. Let x1, x2, · · · be its
values and let pn = P (X = xn). Let g be any real valued function on the
real line. Suppose that

∑

n

|g(xn)| pn < ∞

Prove that g(X) is a random variable and

E[g(X)] =
∑

n

g(xn)pn

Note that I did not say that g was measurable.

7. Let X be a random variable which has a density f(x). This means its dis-
tribution function F (x) satisfies F (x) =

∫

x

−∞
f(u) du, i.e., its distribution is

f(x) times Lebesgue measure. Let g(x) be a real-valued measurable function
on the real line such that

∫

∞

−∞

|g(x)| f(x) dx < ∞

Prove that

E[g(X)] =

∫

∞

−∞

g(x) f(x) dx

where the integrals with respect to dx are integration with respect to Lebesgue
measure.

The last three problems are not to be turned in. They are standard prob-
lems in a course like 564. I have included them for background.

8. (564 discrete RV’s) Let X be a discrete RV, x1, x2, · · · its values and
pn = P (X = xn). The function f(x) which is pn at xn and is 0 at points not
equal to one of the xn is often called the “probability mass function” in 564
level probability courses.

Suppose we have a coin with probability p of heads. (p is not necessarily
1/2.) The following discrete RV’s are of interest:
Binomial: Fix a positive integer n. Flip the coin n times and let X be the
number of heads. So X can be 0, 1, 2, · · · , n.
Geometric: Flip the coin until you get heads for the first time. Let X be
the number of tails. (Warning: depending on the author the definition of X
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is sometimes taken to be the total number of flips, including the final one
that gave heads.) So the possible values of X are the nonnegative integers.
Negative binomial: Fix an integer r. Flip the coin until we get heads for
the rth time. Let X be the total number of tails. So the possible values of
X are the nonnegative integers.

For each of these find the probability mass function and the expected
value of X.

9. (564 continuous RV’s) In a 564 level course, “continuous RV” usually
means that the distribution of the RV is absolutely continuous with respect
to Lebesgue measure and so is given by f(x)dx. (Having a density implies
the distribution function is continuous, but the converse is very false.) Here
are three common “continuous” RV’s.
Uniform: We say X is uniform on [a, b] if f(x) = 1

b−a
for a ≤ x ≤ b and

f(x) = 0 otherwise.
Exponential: We say X has an exponential distribution if f(x) = λe−λx for
x ≥ 0 and f(x) = 0 for x < 0. Here λ is a positive parameter.
Normal: We say X has a normal distribution if

f(x) =
1√
2πσ2

exp(−(x− µ)2

2σ2
)

Here µ is a real parameter and σ2 is a positive parameter.
Find the expected value of each of these random variables.

10. Let X be a random variable with a normal distribution. Find the density
function of X2. Hint: first find an expression for the distribution function of
X2.
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