Math 563 - Fall '14-Homework 7

Do 6 of the 7 problems

1. (from Durrett) Thinning a process distribution. Let N have a Poisson distribution with parameter λ. (Note N is not a Poission process, just a single RV.) Let X_{n} be an i.i.d. sequence taking only the values 0 and 1. Assume also that N and $\left\{X_{n}\right\}_{n=1}^{\infty}$ are independent. Let

$$
N_{0}=\left|\left\{n \leq N: X_{n}=0\right\}\right|, \quad N_{1}=\left|\left\{n \leq N: X_{n}=1\right\}\right|
$$

Here | | just means the cardinality of the set. Prove that N_{0} and N_{1} are independent, and each is Poisson with parameters $(1-p) \lambda$ and $p \lambda$ where $p=P\left(X_{n}=1\right)$.
2. (from Durrett) Let $\Omega=\{a, b, c\}$. Given an example of a random variable X and σ-fields $\mathcal{F}_{1}, \mathcal{F}_{2}$ such that

$$
E\left[E\left[X \mid \mathcal{F}_{1}\right] \mid \mathcal{F}_{2}\right] \neq E\left[E\left[X \mid \mathcal{F}_{2}\right] \mid \mathcal{F}_{1}\right]
$$

3. (from Durrett) Define $\operatorname{var}[X \mid \mathcal{F}]$ to be $E\left[X^{2} \mid \mathcal{F}\right]-E[X \mid \mathcal{F}]^{2}$. Prove that

$$
\operatorname{var}(X)=E[\operatorname{var}[X \mid \mathcal{F}]]+\operatorname{var}(E[X \mid \mathcal{F}])
$$

(This is short).
4. (from Durrett) Let Y_{n} be an i.i.d. sequence of random variables. Let N be a random variable taking values in the positive integers which is independent of $\left\{Y_{n}\right\}_{n=1}^{\infty}$. Let μ and σ^{2} be the mean and variance of the Y_{n}. Let

$$
X=\sum_{n=1}^{N} Y_{n}
$$

So the number of terms in the sum is random. Show that

$$
\operatorname{var}(X)=\sigma^{2} E[N]+\mu^{2} \operatorname{var}(N)
$$

5. Let X_{n} be an independent sequence of random variables. Define a power series by

$$
f(z)=\sum_{n=1}^{\infty} X_{n} z^{n}
$$

The radius of convergence of this power series depends on the X_{n}, so it is a random variable. Prove that this radius is equal to a constant a.s.
6. (from Kallenburg) Let X, Y, Z, W be random variables such that (X, Y) has the same distribution as (Z, W). X is integrable. Prove that $E[X \mid Y]$ has the same distribution as $E[Z \mid W]$. The notation $E[X \mid Y]$ means $E[X \mid \sigma(Y)]$. Hint: recall problem 3 from the first homework which showed that any $\sigma(Y)$ measurable function can be written in the form $f(Y)$, where f is a Borelmeasurable function on the real line. So $E[X \mid Y]$ can be written in the form $f(Y)$. Show that $E[Z \mid W]$ is $f(W)$.
7. Let X be a random variable with $E|X|<\infty$. In general the σ-field generated by $|X|$ will be smaller than the σ-field generated by X. The goal of this problem is to find an explicit formula for $E[X \mid \sigma(|X|)]$ in a couple of special cases.
(a) Suppose X is a discrete RV (countable range). Find an explicit formula for $E[X \mid \sigma(|X|)]$.
(b) Now suppose the distribution of X is absolutely continuous with respect to Lebesgue measure and the density function is $f(x)$. Use your answer to part (a) to guess a formula for $E[X \mid \sigma(|X|)]$, and then show that your guess is correct. Your formula should involve f.

