Math 563 - Fall 15 - Homework 1

1. Let E_n be a sequence of events. Let

$$A = \limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$$
$$B = \liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k$$

Prove that

 $1_A = \limsup_{n \to \infty} 1_{E_n}$ $1_B = \liminf_{n \to \infty} 1_{E_n}$

2. Let E_n be a sequence of events. Recall that $\limsup_{n\to\infty} E_n$ is defined to be $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$. This event can be thought of as the event that E_n occurs infinitely often. Prove that if $\sum_{n=1}^{\infty} P(E_n) < \infty$, then $P(E_n i.o.) = 0$. This is sometimes called the "easy half" of the Borel Cantelli lemma.

3. Let E_n be a sequence of events with $P(E_n) = 1$ for all n. Prove that

$$P(\cap_{n=1}^{\infty} E_n) = 1$$

4. (from Resnick) Let \mathcal{F} be a σ -field in Ω . Suppose Q is a function from \mathcal{F} into [0,1] such that $Q(\Omega) = 1$, Q is finitely additive on \mathcal{F} , and Q has the following property. If $E_n \in \mathcal{F}$ are pairwise disjoint and their union is Ω , then $\sum_{n=1}^{\infty} Q(E_n) = 1$. Prove that Q is a probability measure.

5. (from Resnick) Let P_1, P_2 be two probability measures on (Ω, \mathcal{F}) . You might think that if they agree on a collection \mathcal{C} of events, and the σ -field generated by \mathcal{C} is \mathcal{F} , then the two probability measures agree on all of \mathcal{F} . This is not true. Show that the following gives a counterexample.

 $\Omega = \{a, b, c, d\} \text{ and } \mathcal{C} = \{\{a, b\}, \{c, d\}, \{a, c\}, \{b, d\}\}\$

$$P_1(\{a\}) = P_1(\{d\}) = P_2(\{b\}) = P_2(\{c\}) = \frac{1}{6},$$
$$P_1(\{b\}) = P_1(\{c\}) = P_2(\{a\}) = P_2(\{d\}) = \frac{1}{3}$$

6. (from Resnick) Let P be a probability measure on $\mathcal{B}(\mathbb{R})$, the Borel sets in \mathbb{R} . Prove that for any $E \in \mathcal{B}(\mathbb{R})$ and any $\epsilon > 0$ there exits a finite union of disjoint intervals A such that $P(E\Delta A) < \epsilon$.

Hint: Define \mathcal{F} to be the collection of Borel sets such that for all $\epsilon > 0$ there exits a finite union of disjoint intervals A such that $P(E\Delta A) < \epsilon$. What can you prove about \mathcal{F} ?