Math 563 - Fall 15 - Homework 1

6. (from Resnick) Let P be a probability measure on $\mathcal{B}(\mathbb{R})$, the Borel sets in \mathbb{R}. Prove that for any $E \in \mathcal{B}(\mathbb{R})$ and any $\epsilon>0$ there exits a finite union of disjoint intervals A such that $P(E \Delta A)<\epsilon$.

Hint: Define \mathcal{F} to be the collection of Borel sets such that for all $\epsilon>0$ there exits a finite union of disjoint intervals A such that $P(E \Delta A)<\epsilon$. What can you prove about \mathcal{F} ?
Solution: I am interpretting "intervals" to mean all intervals that are open, closed or half-open/half-closed, along with singletons, the entire real line and half-infinite intervals.

Clearly \mathcal{F} contains all sets which are intervals. The σ-algebra generated by the intervals is the Borel sets. So if we can show that \mathcal{F} is a σ-algebra, then \mathcal{F} must be all the Borel sets.
Closed under complements: Let $E \in \mathcal{F}$. Let $\epsilon>0$. Then there is a set A which is the disjoint union of a finite collection of intervals such that $P(A \Delta E)<\epsilon$. The set A^{c} is a finite disjoint union of intervals. And it is easy to check that $A \Delta E=A^{c} \Delta E^{c}$. So $P\left(A^{c} \Delta E^{c}\right)<\epsilon$. Thus $E^{c} \in \mathcal{F}$.
Closed under finite unions: By induction it is enough to show it is closed under the union of two sets. So let $E_{1}, E_{2} \in \mathcal{F}$. Let $\epsilon>0$. Then there are sets A_{1}, A_{2} which are disjoint unions of intervals such that $P\left(E_{i} \Delta A_{i}\right)<\epsilon / 2$ for $i=1,2$. Let $A=A_{1} \cup A_{2}$. Note that A is a finite disjoint union of intervals. It is easy to check that

$$
A \Delta\left(E_{1} \cup E_{2}\right) \subset\left(A_{1} \Delta E_{1}\right) \cup\left(A_{2} \Delta E_{2}\right)
$$

So
$P\left(A \Delta\left(E_{1} \cup E_{2}\right)\right) \leq P\left(\left(A_{1} \Delta E_{1}\right) \cup\left(A_{2} \Delta E_{2}\right)\right) \leq P\left(A_{1} \Delta E_{1}\right)+P\left(A_{2} \Delta E_{2}\right)<\epsilon / 2+\epsilon / 2$
Thus $E_{1} \cup E_{2} \in \mathcal{F}$.
Closed under countable unions: We have shown it is a field, so by the usual trick of writing a union as a disjoint union, it is enough to show it is closed under disjoint countable unions. So let $E_{n} \in \mathcal{F}$ be disjoint and let $E=$ $\cup_{n=1}^{\infty} E_{n}$. Let $\epsilon>0$. Since they are disjoint,

$$
\sum_{n=1}^{\infty} P\left(E_{n}\right) \leq 1
$$

So we can pick N so that

$$
\sum_{n=N+1}^{\infty} P\left(E_{n}\right)<\epsilon / 2
$$

We have $\cup_{n=1}^{N} E_{n} \in \mathcal{F}$. So there is a set A which is a finite disjoint union of intervals such that $P\left(\left(\cup_{n=1}^{N} E_{n}\right) \Delta A\right)<\epsilon / 2$. We have

$$
E \Delta A \subset\left(\left(\cup_{n=1}^{N} E_{n}\right) \Delta A\right) \cup\left(\cup_{n=N+1}^{\infty} E_{n}\right)
$$

So

$$
P(E \Delta A) \leq P\left(\left(\cup_{n=1}^{N} E_{n}\right) \Delta A\right)+P\left(\cup_{n=N+1}^{\infty} E_{n}\right)<\epsilon / 2+\epsilon / 2
$$

Thus $E \in \mathcal{F}$.

