
Math 563 - Fall 15 - Homework 2

1. This problem is an introduction to the Kolmogorov extension theorem
which we will prove later. Let Ω be the set of real valued sequences. So an
element of Ω looks like ω = (ω1, ω2, ω3, · · ·) where the ωi are real numbers. A
subset E is called a finite dimensional rectangle if there is a positive integer
n and −∞ ≤ ai ≤ bi ≤ ∞ for i = 1, 2, · · · , n such that
E = {ω : ωi ∈ (ai, bi] for i = 1, 2, · · · , n}.
(a) Show that the collection of finite dimensional rectangles is a semi-algebra.
(not hard)
(b) For n = 1, 2, 3, · · ·, let µn be a probability measure on the Borel sets in
R

n. We say they are consistent if for all n and −∞ ≤ ai < bi ≤ ∞ for
i = 1, 2, · · · , n, we have

µn+1((a1, b1]× (a2, b2]× · · · × (an, bn]× R) = µn((a1, b1]× (a2, b2]× · · · × (an, bn])

Let F be the σ-field in Ω generated by the finite dimensional rectangles. The
Kolmogorov extension theorem says there is a unique probability measure P
on (Ω,F) such that

P ({ω : ωi ∈ (ai, bi] for i = 1, 2, · · · , n}) = µn((a1, b1]× (a2, b2]× · · · × (an, bn])

Prove the uniqueness part of the theorem, i.e., if two probability measures
on (Ω,F) both satisfy the above then they are equal on F .

2. (from Resnick) A countable partition of Ω is a countable disjoint collection
of sets whose union is all of Ω. Let {En}

∞

n=1 be such a partition and let F
be the σ-field generated by the collection sets {En}

∞

n=1.
(a) Given an explicit description of the sets in F .
(b) Let X : Ω → R. Prove that X is measurable with respect to F if and
only if there are constants cn such that

X =
∞∑

n=1

cn1En

Notation comment: If X is a random variable, then the distribution of X
is a probability measure on the Borel sets in R which I will denote µX . It is
defined by µX(B) = P (X ∈ B) where B is a Borel set. Resnick denotes it
by P ◦X−1.

3. Let X be a simple random variable on a probability space (Ω,F , P ). (This
means that the range of X is finite.) Let c1, c2, · · · , cn be the values that X
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takes on. Let pj = P (X = cj). Let µX be the distribution of X. Give
an explicit description of µX in terms of the cj and pj. (This is not a hard
problem, and your answer can be quite short.)

4. (from Durrett) Let X be a real valued function on Ω and let σ(X) be
the σ-field generated by the sets X−1(B) where B is a Borel set in R. (This
is the smallest σ-field with respect to which X is measurable.) Let Y be a
real valued function on Ω. Prove that Y is measurable with respect to σ(X)
if and only if there is a Borel measurable function f : R → R such that
Y = f(X).

Hint: First reduce to the case that Y ≥ 0. Show that
{ω : m2−n ≤ Y (ω) < (m+1)2−n} = X−1(Bn,m), where Bn,m is a Borel set in
R. Now let fn(x) = m2−n for x ∈ Bn,m. Show that fn(x) converges pointwise
and let f(x) be the limit.

5. We flip a fair coin infinitely many times. Let Xn be 1 if the nth flip
is heads, and 0 if the nth flip is tails. The sample space Ω consists of all
sequences of heads and tails. Xn is a real valued function on Ω. In this
problem we assume that there is a σ-field F and a probability measure P
such that Xn is a random variable and the probability measure agrees with
your intiution. (We will eventually prove such an F and P exist.) Define

X =
∞∑

n=1

Xn

2n

Note that 0 ≤ X ≤ 1. Find the distribution µX of X. Hint: find P (X ∈ E)
when E is an interval of the form ((k − 1)/2n, k/2n) for integers k and n.

6. (Optional: I will not grade this one.) Let Xn be as in the last
problem. Now define

Y =
∞∑

n=1

2Xn

3n

NB: It is 3n in the denominator, not 2n.
(a) Prove that the distribution function FY is continuous.
(b) Prove that FY is differentiable a.e. with the derivative equal to 0 a.e.

Hint: prove that FY is constant on the complement of the Cantor set.
(c) Let µY be the distribution of Y . Let m be Lebesgue measure on the

real line. Prove that µY and m are mutually singular. This means that there
is a Borel set A with m(A) = 0 and µY (A

c) = 0.
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