Math 563-Fall 15 - Homework 2-Solution

4. (from Durrett) Let X be a real valued function on Ω and let $\sigma(X)$ be the σ-field generated by the sets $X^{-1}(B)$ where B is a Borel set in \mathbb{R}. (This is the smallest σ-field with respect to which X is measurable.) Let Y be a real valued function on Ω. Prove that Y is measurable with respect to $\sigma(X)$ if and only if there is a Borel measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $Y=f(X)$.

Solution: If $Y=f(X)$ for a Borel measurable f, then Y is the composition of measurable functions and so is measurable.

Now suppose Y is $\sigma(X)$ measurable. The positive and negative parts of Y are then both $\sigma(X)$ measurable. So if they can be written as $Y^{+}=f_{1}(X)$ and $Y^{-}=f_{2}(X)$ for Borel measurable f_{1}, f_{2}, then we can set $f=f_{1}-f_{2}$ and have $Y=f(X)$.

So now we assume $Y \geq 0$ and follow the hint. For a positive integer n and any integer m, the event $\left\{\omega: m 2^{-n} \leq Y(\omega)<(m+1) 2^{-n}\right\}$ is in $\sigma(X)$. So it can be written as $X^{-1}\left(B_{n, m}\right)$ for a Borel set $B_{n, m}$ in \mathbb{R}. Note that $B_{n, m}$ and $B_{n, k}$ need not be disjoint since there can be real numbers that are not in the range of Y but are in both of these Borel sets. So if we just define $f_{n}(x)=m 2^{-n}$ for $x \in B_{n, m}$, this is not well defined. Instead we define

$$
g_{n}(x)=\sum_{m=0}^{m} m 2^{-n} 1_{B_{n, m}}
$$

This sum might be ∞, but this will still be measurable with respect to the Borel sets in the extended reals. Now let $f_{n}(x)=g_{n}(x)$ when $g_{n}(x)$ is finite and $f_{n}(x)=0$ when $g_{n}(x)$ is infinite. Then f_{n} is Borel measurable.

Now let $\omega \in \Omega$. Then for each n there is a unique m_{n} such that $m_{n} 2^{-n} \leq$ $Y(\omega)<\left(m_{n}+1\right) 2^{-n}$. We have $\omega \in X^{-1}\left(B_{n, m_{n}}\right)$, so $X(\omega) \in B_{n, m_{n}}$. And ω cannot be in any other $B_{n, k}$ for $k \neq m_{n}$. So for $x=X(\omega)$, the sum defining $g_{n}(x)$ has only one nonzero term. We have $f_{n}(X(\omega))=m_{n} 2^{-n}$ and so $\left|Y(\omega)-f_{n}(X(\omega))\right|<2^{-n}$. Thus $f_{n}(X(\omega))$ converges to $Y(\omega)$. This shows f_{n} converges on the range of X, but off the range we don't know it converges. The set where it does converge is Borel measurable, so we can define f to be $\lim _{n} f_{n}$ when the limits exits and to be 0 when the limit does not exist. Then f is Borel measurable and $f(X(\omega))=Y(\omega)$.

