Math 563 - Fall 15 - Homework 3

1. (from Resnick, slightly modified) Let X_n be a sequence of RV's on (Ω, \mathcal{F}, P) . Define

$$S_n = \sum_{i=1}^n X_i$$

Let $\tau = \inf\{n > 0 : S_n > 0\}$. Note that τ may sometimes be ∞ .

(a) Prove τ is a random variable, i.e., it is measurable. Note that τ takes values in the extended reals, so by measurable I mean measurable with respect to the Borel sets in the extended reals.

(b) Define X to be S_{τ} when τ is finite and 0 when $\tau = \infty$. Prove X is a random variable.

2. Let A_n be independent events. Prove that

$$P(\bigcap_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} P(A_n)$$

3. (from Durrett) Let $\Omega = (0, 1)$, \mathcal{F} be the Borel sets in (0, 1), and let P be Lebesgue measure. Define RV's by

$$X_n(\omega) = \begin{cases} 0 & \text{if } [2^n \omega] \text{ is even} \\ 1 & \text{if } [2^n \omega] \text{ is odd} \end{cases}$$

where [x] is the largest integer less than or equal to x. Prove that $\{X_n\}_{n=1}^{\infty}$ are independent random variables. Note that this gives a rigorous construction of the probability space for flipping a fair coin infinitely many times.

4. Prove that a random variable X is independent of itself if and only if there is a constant c such that P(X = c) = 1. Hint: What can you say about the distribution function of X?

Optional challenge: Prove that a random element $X : \Omega \to \Omega'$ is independent of itself if and only if there is a $c \in \Omega'$ such that P(X = c) = 1. Warning: I don't know how to do this.

5. (from Resnick) Let A_n be a sequence of independent events with $P(A_n) < 1$ for all n. Prove

$$P(\bigcup_{n=1}^{\infty} A_n) = 1$$
 if and only if $P(A_n i.o.) = 1$

Give a counterexample to show that the condition $P(A_n) < 1$ cannot be dropped.

6. (from Resnick) Let X_n be a sequence of independent random variables. Prove

$$P(\sup_{n} X_n < \infty) = 1$$

if and only if there is a finite constant M such that

$$\sum_{n=1}^{\infty} P(X_n > M) < \infty$$