Math 563-Fall 15 - Homework 3 - selected solutions

4. Prove that a random variable X is independent of itself if and only if there is a constant c such that $P(X=c)=1$. Hint: What can you say about the distribution function of X ?
Solution Consider the event $X \leq a$ for a real number a. It must be independent of itself, so it can only have probability 0 or 1 . So the distribution function $F(x)$ only takes on the values 0 and 1 . Consider $\{x: F(x)=0\}$. Since $F(x)$ converges to 0 at $-\infty$, this set cannot be empty and since it conveges to 1 at ∞, this set is bounded above. So if we let $c=\sup \{x: F(x)=0\}$, c will be a finite number. By def of the sup, there are x_{n} with $F\left(x_{n}\right)=0$ and x_{n} increasing to c. Letting $F(c-)$ be the left hand limit of F at c, this shows $F(c-)=0$. This implies $P(X<c)=0$. Also by def of the sup, $F(c+1 / n)$ is not 0 and so must be 1 . Since F is right continuous, $F(c)=1$. So $P(X \leq c)=1$. Thus $P(X=c)=P(X \leq c)-P(X<c)=1$.
5. (from Resnick) Let X_{n} be a sequence of independent random variables. Prove

$$
P\left(\sup _{n} X_{n}<\infty\right)=1
$$

if and only if there is a finite constant M such that

$$
\sum_{n=1}^{\infty} P\left(X_{n}>M\right)<\infty
$$

Solution \Rightarrow : We prove the contrapositive. So assume for all constants M we have

$$
\sum_{n=1}^{\infty} P\left(X_{n}>M\right)=\infty
$$

We must show this implies $P\left(\sup _{n} X_{n}<\infty\right)<1$. By Borel-Cantelli, we know that for all $M, P\left(X_{n}>M\right.$ i.o. $)=1$. If $X_{n}>M$ infinitely often, then we certainly have $\sup _{n} X_{n}>M$. So for all M we have that $P\left(\sup _{n} X_{n}>M\right)=1$. Now we restrict to M which are postive integers. The countable intersection of events with probability 1 has probability 1 , so $P\left(\cap_{m=1}^{\infty}\left\{\sup _{n} X_{n}>m\right\}\right)=1$. But the event $\cap_{m=1}^{\infty}\left\{\sup _{n} X_{n}>m\right\}$ is the event $\sup _{n} X_{n}=\infty$. So $P\left(\sup _{n} X_{n}=\infty\right)=1$. So $P\left(\sup _{n} X_{n}<\infty\right)=0$ which is certainly <1.

Solution \Leftarrow : Now suppose there is a constant M such that

$$
\sum_{n=1}^{\infty} P\left(X_{n}>M\right)<\infty
$$

By easy half of Borel Cantelli, $P\left(X_{n}>\right.$ Mi.o. $)=0$. The complement of the event $X_{n}>M$ i.o is not $X_{n} \leq M$ i.o.. It is the event that $X_{n}>M$ for only finite many n. So $P\left(X_{n}>M\right.$ finitely often $)=1$. Now suppose $X_{n}>M$ for only finite many n. Let C be the maximum of the X_{n} which are $>M$. There are only fintely many, so C is finite. (Note that C is a random variable, but that is ok.) We now have $\sup _{n} X_{n} \leq \max \{M, C\}=C$ and so $\sup _{n} X_{n}<\infty$. So $P\left(\sup _{n} X_{n}<\infty\right)=1$.

