Math 563 - Fall 15 - Homework 4

1. Let $X_{1}, X_{2}, \cdots, X_{n}$ be RV's and suppose that the distribution of $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ is absolutely continuous with respect to Lebesgue measure on \mathbb{R}^{n} and the density can be written in the form $g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right) \cdots g_{n}\left(x_{n}\right)$ where the g_{i} are non-negative measurable functions but the integral of g_{i} over \mathbb{R} need not be 1 .
(a) Prove that each X_{i} is an absolutely continuous random variable.
(b) Prove $X_{1}, X_{2}, \cdots, X_{n}$ are independent.
2. Let X be a discrete real-valued random variable, i.e., it has countable range. Let x_{1}, x_{2}, \cdots be its values and let $p_{n}=P\left(X=x_{n}\right)$. Let g be any real valued function on the real line. Suppose that

$$
\sum_{n}\left|g\left(x_{n}\right)\right| p_{n}<\infty
$$

Prove that $g(X)$ is a random variable and

$$
E[g(X)]=\sum_{n} g\left(x_{n}\right) p_{n}
$$

Note that I did not say that g was measurable.
3. (Resnick) Let X_{n} be a sequence of independent random variables. Consider the random power series $\sum_{n=1}^{\infty} X_{n} z^{n}$. Its radius of convergence R is a random variable. Prove that R is a constant almost surely. In other words, prove there is a constant c such that $P(R=c)=1$. Hint: the radius of convergence R is given by $R^{-1}=\lim \sup _{n}\left|X_{n}\right|^{1 / n}$. Note that R can be ∞ or 0 .
4. (a) Let X and Y be independent random variables which take values in the integers. Prove that the distribution of $X+Y$ is given by

$$
P(X+Y=n)=\sum_{m=-\infty}^{\infty} P(X=m) P(Y=n-m)
$$

(b) X has a Poisson distribution with parameter $\lambda>0$ if it takes on the values $0,1,2, \cdots$ and

$$
P(X=n)=\frac{e^{-\lambda} \lambda^{n}}{n!}
$$

Show that if X and Y are independent random variables, X has a Poisson distribution with parameter λ and Y has a Poisson distribution with parameter μ, then $X+Y$ has a Poisson distribution. What is the parameter for $X+Y$?
5. (Resnick) Let X be a random variable. A number m is called a median of X if $P(X \geq m) \geq 1 / 2$ and $P(X \leq m) \geq 1 / 2$. You should convince yourself that there is always at least one median, but it need not be unique. Recall that the mean of X is $\mu=E[X]$ if X is integrable.
(a) Prove that if X has finite variance, then the minimum of $f(a)=E\left[|X-a|^{2}\right]$ occurs at $a=\mu$, the mean.
(b) Let m be a median of X. Prove that the minimum of $g(a)=E[|X-a|]$ occurs at m.

