Math 563 - Fall 15 - Homework 4

5. (Resnick) Let X be a random variable. A number m is called a median of X if $P(X \ge m) \ge 1/2$ and $P(X \le m) \ge 1/2$. You should convince yourself that there is always at least one median, but it need not be unique. Recall that the mean of X is $\mu = E[X]$ if X is integrable.

(b) Let *m* be a median of *X*. Prove that the minimum of g(a) = E[|X - a|] occurs at *m*.

Solution: Define

$$I_{-} = \{t : P(X \le t) \ge \frac{1}{2}\}, \quad I_{+} = \{t : P(X \ge t) \ge \frac{1}{2}\}$$

and let $m_- = \inf I_-$ and $m_+ = \sup I_+$. Note that $P(X \leq t)$ is increasing in t and $P(X \geq t)$ is decreasing in t. This and the continuity of P implies $I_- = [m_-, \infty)$ and $I_+ = (-\infty, m_+]$. Every t belongs to at least one of I_- or I_+ since $P(X \leq t) + P(X \geq t) \geq 1$. So $m_- \leq m_+$. The medians are all the values in the interval $[m_-, m_+]$. (This interval could just be a single point.)

We claim that

$$E|X-c| = \int_{c}^{\infty} P(X \ge t) dt + \int_{-\infty}^{c} P(X \le t) dt$$
(1)

We demonstrate this as follows. By the transformation theorem

$$E|X-c| = \int_{-\infty}^{\infty} |x-c| d\mu_X$$

=
$$\int_{-\infty}^{\infty} [1_{x>c} \int_c^x dt + 1_{x
=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [1_{c\le t\le x} + 1_{x\le t\le c}] dt d\mu_X$$$$

Using Fubini's theorem

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [1_{c \le t \le x} + 1_{x \le t \le c}] d\mu_X dt$$

$$= \int_{-\infty}^{\infty} [1_{c \le t} P(X \ge t) + 1_{t \le c} P(X \le t)] d\mu_X$$

$$= \int_{c}^{\infty} P(X \ge t) dt + \int_{-\infty}^{c} P(X \le t) dt$$

Now let m be a median. Using (1) we have for c > m

$$E|X - c| - E|X - m| = \int_{m}^{c} [P(X \le t) - P(X \ge t)]dt$$

and if c < m we have

$$E|X-c| - E|X-m| = \int_{c}^{m} [P(X \ge t) - P(X \le t)]dt$$

We will complete the proof by showing that $P(X \leq t) - P(X \geq t)$ is 0 on (m_-, m_+) , is positive on (m_+, ∞) , and is negative on $(-\infty, m_-)$.

If $t > m_+$ then $P(X \ge t) < \frac{1}{2}$ and $P(X \le t) \ge \frac{1}{2}$.

So $P(X \le t) - P(X \ge t) > 0$.

If $t < m_-$ then $P(X \ge t) \ge \frac{1}{2}$ and $P(X \le t) < \frac{1}{2}$. So $P(X \le t) - P(X \ge t) < 0$.

If $m_- < m_+$ then the events $X \le m_-$ and $X \ge m_+$ are disjoint. So the sum of their probabilities is at most 1. Since $P(X \le m_-) \ge \frac{1}{2}$ and $P(X \ge m_+) \ge \frac{1}{2}$, it must be that $P(X \le m_-) = P(X \ge m_+) = \frac{1}{2}$ and $P(m_- < X < m_+) = 0$. So for $m_- < t < m_+$ we have

 $P(X \leq t) - P(X \geq t) = 0$. Note that this quantity may not be zero at m_{-} and m_{+} .