Math 563-Fall 15 - Homework 4

5. (Resnick) Let X be a random variable. A number m is called a median of X if $P(X \geq m) \geq 1 / 2$ and $P(X \leq m) \geq 1 / 2$. You should convince yourself that there is always at least one median, but it need not be unique. Recall that the mean of X is $\mu=E[X]$ if X is integrable.
(b) Let m be a median of X. Prove that the minimum of $g(a)=E[|X-a|]$ occurs at m.

Solution: Define

$$
I_{-}=\left\{t: P(X \leq t) \geq \frac{1}{2}\right\}, \quad I_{+}=\left\{t: P(X \geq t) \geq \frac{1}{2}\right\}
$$

and let $m_{-}=\inf I_{-}$and $m_{+}=\sup I_{+}$. Note that $P(X \leq t)$ is increasing in t and $P(X \geq t)$ is decreasing in t. This and the continuity of P implies $I_{-}=\left[m_{-}, \infty\right)$ and $I_{+}=\left(-\infty, m_{+}\right]$. Every t belongs to at least one of I_{-}or I_{+}since $P(X \leq t)+P(X \geq t) \geq 1$. So $m_{-} \leq m_{+}$. The medians are all the values in the interval $\left[m_{-}, m_{+}\right]$. (This interval could just be a single point.)

We claim that

$$
\begin{equation*}
E|X-c|=\int_{c}^{\infty} P(X \geq t) d t+\int_{-\infty}^{c} P(X \leq t) d t \tag{1}
\end{equation*}
$$

We demonstrate this as follows. By the transformation theorem

$$
\begin{aligned}
E|X-c| & =\int_{-\infty}^{\infty}|x-c| d \mu_{X} \\
& =\int_{-\infty}^{\infty}\left[1_{x>c} \int_{c}^{x} d t+1_{x<c} \int_{x}^{c} d t\right] d \mu_{X} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[1_{c \leq t \leq x}+1_{x \leq t \leq c}\right] d t d \mu_{X}
\end{aligned}
$$

Using Fubini's theorem

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[1_{c \leq t \leq x}+1_{x \leq t \leq c}\right] d \mu_{X} d t \\
& =\int_{-\infty}^{\infty}\left[1_{c \leq t} P(X \geq t)+1_{t \leq c} P(X \leq t)\right] d \mu_{X} \\
& =\int_{c}^{\infty} P(X \geq t) d t+\int_{-\infty}^{c} P(X \leq t) d t
\end{aligned}
$$

Now let m be a median. Using (1) we have for $c>m$

$$
E|X-c|-E|X-m|=\int_{m}^{c}[P(X \leq t)-P(X \geq t)] d t
$$

and if $c<m$ we have

$$
E|X-c|-E|X-m|=\int_{c}^{m}[P(X \geq t)-P(X \leq t)] d t
$$

We will complete the proof by showing that $P(X \leq t)-P(X \geq t)$ is 0 on (m_{-}, m_{+}), is positive on $\left(m_{+}, \infty\right)$, and is negative on $\left(-\infty, m_{-}\right)$.

If $t>m_{+}$then $P(X \geq t)<\frac{1}{2}$ and $P(X \leq t) \geq \frac{1}{2}$. So $P(X \leq t)-P(X \geq t)>0$.

If $t<m_{-}$then $P(X \geq t) \geq \frac{1}{2}$ and $P(X \leq t)<\frac{1}{2}$.
So $P(X \leq t)-P(X \geq t)<0$.
If $m_{-}<m_{+}$then the events $X \leq m_{-}$and $X \geq m_{+}$are disjoint. So the sum of their probabilities is at most 1 . Since $P\left(X \leq m_{-}\right) \geq \frac{1}{2}$ and $P\left(X \geq m_{+}\right) \geq \frac{1}{2}$, it must be that $P\left(X \leq m_{-}\right)=P\left(X \geq m_{+}\right)=\frac{1}{2}$ and $P\left(m_{-}<X<m_{+}\right)=0$. So for $m_{-}<t<m_{+}$we have $P(X \leq t)-P(X \geq t)=0$. Note that this quantity may not be zero at m_{-} and m_{+}.

