Math 563-Fall '14-Homework 6

1. (from Durrett) Let X_{n} be a sequence of integer valued random variables, X another integer valued random variable. Prove that X_{n} converge to X in distribution if and only if

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=m\right)=P(X=m)
$$

for all integers m.
2. Take a coin with the probability of heads equal to $p \in(0,1)$ and flip it n times. Let X be the number of heads you get. The distribution of X is called the binomial distribution with n trials. It is easy to show that

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1,2, \cdots n
$$

Now fix a $\lambda>0$, and let X_{n} have a binomial distribution with n trials and $p=\lambda / n$. Prove that as $n \rightarrow \infty, X_{n} \Rightarrow X$ where X has the Poisson distribution with parameter λ, i.e.,

$$
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \cdots
$$

3. (a) Let μ_{n} be a sequence of probability measures which have densities $f_{n}(x)$ with respect to Lebesgue measure. Suppose that $f_{n}(x) \rightarrow f(x)$ a.e. where $f(x)$ is a density, i.e., a non-negative function with integral 1. Prove that μ_{n} converges in distribution to μ where μ is $f(x)$ times Lebesgue measure.
(b) Suppose F_{n} has density $1-\cos (2 n \pi x)$ on $[0,1]$ and the density is zero outside this interval. Show that F_{n} converges weakly to the uniform distribution on $[0,1]$, but that the densities f_{n} do not converge.
4. Suppose that the random variables X_{n} are defined on the same probability space and there is a constant c such that X_{n} converges in distribution to the random variable c. Prove or disprove each of the following
(a) X_{n} converges to c in probability
(b) X_{n} converges to c a.s.
5. (from Durrett, converging together lemma) Suppose $X_{n} \Rightarrow X$ and $Y_{n} \Rightarrow c$ where c is a constant. Prove that $X_{n}+Y_{n} \Rightarrow X+c$. Note that this implies that if $X_{n} \Rightarrow X$ and $Y_{n}-X_{n} \Rightarrow 0$, then $Y_{n} \Rightarrow X$.
6. Let X_{n}, Y_{n}, X, Y be random variables defined on the same probability space. Suppose that X_{n} converges in distribution to X and Y_{n} converges in distribution to Y. Suppose further that for each n, X_{n} and Y_{n} are independent, and that X and Y are independent. Prove that $X_{n}+Y_{n}$ converges in distribution to $X+Y$.
