Math 563 - Fall '15-Homework 6 Solutions

1. (from Durrett) Let X_{n} be a sequence of integer valued random variables, X another integer valued random variable. Prove that X_{n} converge to X in distribution if and only if

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=m\right)=P(X=m)
$$

for all integers m.
Solution: We prove that if $\lim _{n \rightarrow \infty} P\left(X_{n}=m\right)=P(X=m)$ then we have convergence in distribution. The other direction is easy.

For finite a and $b, P\left(a \leq X_{n} \leq b\right)$ is a finite sum of $P\left(X_{n}=m\right)$. So the hypothesis immediately implies

$$
\lim _{n} P\left(a \leq X_{n} \leq b\right)=P(a \leq X \leq b)
$$

Now let $\epsilon>0$. Pick L such that

$$
P(-L \leq X \leq L) \geq 1-\epsilon
$$

Note for later use that this implies $P(X<-L)<\epsilon$. Then pick N so that for $n \geq N$ we have

$$
P\left(-L \leq X_{n} \leq L\right) \geq 1-2 \epsilon
$$

So $P\left(X_{n}<-L\right)<2 \epsilon$ for $n \geq N$. The triangle inequality gives

$$
\begin{aligned}
& \left|P\left(X_{n} \leq b\right)-P(X \leq b)\right| \\
= & \left|P\left(X_{n}<-L\right)+P\left(-L \leq X_{n} \leq b\right)-P(-L \leq X \leq b)\right|+P(X<-L) \mid \\
\leq & \left|P\left(-L \leq X_{n} \leq b\right)-P(-L \leq X \leq b)\right|+3 \epsilon
\end{aligned}
$$

Thus

$$
\limsup _{n}\left|P\left(X_{n} \leq b\right)-P(X \leq b)\right| \leq 3 \epsilon
$$

This is true for all $\epsilon>0$. So the \lim sup above is 0 , i.e., $P\left(X_{n} \leq b\right)$ converges to $P(X \leq b)$. So X_{n} converges to X in disbtribution.
3. (a) Let μ_{n} be a sequence of probability measures which have densities $f_{n}(x)$ with respect to Lebesgue measure. Suppose that $f_{n}(x) \rightarrow f(x)$ a.e. where
$f(x)$ is a density, i.e., a non-negative function with integral 1. Prove that μ_{n} converges in distribution to μ where μ is $f(x)$ times Lebesgue measure.
Solution: We first show that f_{n} converges to f in L^{1}. Since $f_{n} \geq 0$, $\left(f-f_{n}\right)^{+} \leq f$. (Note that it is not true that $\left(f-f_{n}\right)^{-} \leq f$.) Since f is integrable and $\left(f-f_{n}\right)^{+}$converges to zero a.e., the dominated convergence theorem implies

$$
\lim _{n} \int_{-\infty}^{\infty}\left(f(x)-f_{n}(x)\right)^{+} d x=0
$$

Since f_{n} and f have integral 1,

$$
\int_{-\infty}^{\infty}\left(f(x)-f_{n}(x)\right) d x=0
$$

So

$$
\int_{-\infty}^{\infty}\left(f(x)-f_{n}(x)\right)^{+} d x=\int_{-\infty}^{\infty}\left(f(x)-f_{n}(x)\right)^{-} d x
$$

Since the left side converges to zero the right side does too. Finally, we have

$$
\int_{-\infty}^{\infty}\left|f(x)-f_{n}(x)\right| d x=\int_{-\infty}^{\infty}\left(f(x)-f_{n}(x)\right)^{+} d x+\int_{-\infty}^{\infty}\left(f(x)-f_{n}(x)\right)^{-} d x \rightarrow 0
$$

Fix an x. Letting F_{n}, F be the distribution functions of X_{n}, X,

$$
\begin{aligned}
\left|F_{n}(x)-F(x)\right| & =\left|\int_{-\infty}^{x}\left(f_{n}(u)-f(u)\right) d u\right| \\
& \leq \int_{-\infty}^{x}\left|f_{n}(u)-f(u)\right| d u \leq \int_{-\infty}^{\infty}\left|f_{n}(u)-f(u)\right| d u
\end{aligned}
$$

The last integral converges to zero, so $F_{n}(x)$ converges to $F(x)$ for all x.
4. Suppose that the random variables X_{n} are defined on the same probability space and there is a constant c such that X_{n} converges in distribution to the random variable c. Prove or disprove each of the following
(a) X_{n} converges to c in probability

Solution: This is true. Let F_{n} be the distribution function of X_{n} and F the distribution function of c. So $F(x)$ is 0 for $x<c$ and is 1 for $x \geq c$. So the only point where F is not continuous is c. So $F_{n}(x)$ converges to $F(x)$ for
$x \neq c$. So for any $\epsilon>0, F_{n}(c+\epsilon)-F_{n}(c-\epsilon)$ converges to $F(c+\epsilon)-F(c-\epsilon)=1$.
Now
$F_{n}(c+\epsilon)-F_{n}(c-\epsilon)=P\left(c-\epsilon<X_{n} \leq c+\epsilon\right) \geq P\left(c-\epsilon<X_{n}<c+\epsilon\right)$
So $P\left(\left|X_{n}-c\right|<\epsilon\right)$ converges to 1 . This shows X_{n} converges to c in distribution.
(b) X_{n} converges to c a.s. Solution: This is false. By part (a), if X_{n} converges to c in distribution then it converges in probability. But there are sequences that converge to 0 in probability but do not converge a.s., e. g. the "typewriter sequence."
5. (from Durrett, converging together lemma) Suppose $X_{n} \Rightarrow X$ and $Y_{n} \Rightarrow c$ where c is a constant. Prove that $X_{n}+Y_{n} \Rightarrow X+c$. Note that this implies that if $X_{n} \Rightarrow X$ and $Y_{n}-X_{n} \Rightarrow 0$, then $Y_{n} \Rightarrow X$.
Solution: First note that by a previous problem, since Y_{n} converges in distribution to a constant c, it converges in probability to this constant.

Let F_{n} be the distribution function of X_{n} and F the distribution function of X. Fix an x and let $\epsilon>0$. We find upper and lower bounds on $P\left(X_{n}+Y_{n} \leq\right.$ $x)$. We get an upper bound as follows.

$$
\begin{aligned}
& P\left(X_{n}+Y_{n} \leq x\right) \\
= & P\left(X_{n}+Y_{n} \leq x,\left|Y_{n}-c\right| \leq \epsilon\right)+P\left(X_{n}+Y_{n} \leq x,\left|Y_{n}-c\right|>\epsilon\right) \\
\leq & P\left(X_{n} \leq x-c+\epsilon\right)+P\left(\left|Y_{n}-c\right|>\epsilon\right)
\end{aligned}
$$

We know that $P\left(\left|Y_{n}-c\right|>\epsilon\right)$ converges to 0 as $n \rightarrow \infty$. If $x-c+\epsilon$ is a continuity point of F, then $P\left(X_{n} \leq x-c+\epsilon\right)=F_{n}(x-c+\epsilon)$ converges to $F(x-c+\epsilon)$. So

$$
\limsup _{n} P\left(X_{n}+Y_{n} \leq x\right) \leq F(x-c+\epsilon)
$$

for all ϵ such that $x-c+\epsilon$ is a continuity point of F. We can find a sequence of such ϵ which converge to 0 , and $F(x-c+\epsilon)$ converges to $F(x-c)$ as $\epsilon \rightarrow 0$. So

$$
\limsup _{n} P\left(X_{n}+Y_{n} \leq x\right) \leq F(x-c)
$$

We get a lower bound as follows.

$$
P\left(X_{n} \leq x-c-\epsilon\right)
$$

$$
\begin{aligned}
& =P\left(X_{n} \leq x-c-\epsilon,\left|Y_{n}-c\right|<\epsilon\right)+P\left(X_{n} \leq x-c-\epsilon,\left|Y_{n}-c\right| \geq \epsilon\right) \\
& \leq P\left(X_{n}+Y_{n} \leq x\right)+P\left(\left|Y_{n}-c\right| \geq \epsilon\right)
\end{aligned}
$$

So if $x-c-\epsilon$ is a continuity point of F, then taking the liminf we get

$$
\liminf _{n} P\left(X_{n}+Y_{n} \leq x\right) \geq F(x-c-\epsilon)
$$

If $x-c$ is a continuity point of F, then letting $\epsilon \rightarrow 0$ we get

$$
\liminf _{n} P\left(X_{n}+Y_{n} \leq x\right) \geq F(x-c)
$$

Our two bounds imply

$$
\lim _{n} P\left(X_{n}+Y_{n} \leq x\right)=F(x-c)
$$

Since $P(X+c \leq x)=P(X \leq x-c)=F(x-c)$, this shows $X_{n}+Y_{n}$ converges to $X+c$ in distribution.

