Math 563 - Fall ’18 - Homework 5
Do 5 of the 6 problems

1. (from Durrett, converging together lemma) Suppose X,, = X and Y,, = ¢
where ¢ is a constant. Prove that X,, +Y,, = X + ¢. Note that this implies
that if X,, = X and Y,, — X,, = 0, then V,, = X.

2. The gamma distribution is a two parameter family of densities. The
parameters A and w are both positive. The density is
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for x > 0. The density is 0 for x < 0. The gamma function is defined by
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Integration by parts shows I'(w + 1) = wl'(w). If w is an integer then
I'(w) = (w—1)!. A little calculus shows the mean of the gamma distribution
is w/\ and the variance is w/\%.

For positive integers n let X,, be a random variable with a gamma dis-
tribution with w = n and A = 1. Prove that (X,, — n)/y/n converges in
distribution to a standard normal.

3. Suppose that X, converges in distribution to X and Y,, converges in dis-
tribution to Y. Suppose further that for each n, X,, and Y,, are independent,
and that X and Y are independent. Assume that X,,Y,,X,Y are defined
on the same probability space. Prove that X,, +Y,, converges in distribution
to X +Y.

4. Let X, be i.id. with EX,, =0 and EX? =1. Let S, = Y ,_, X). Use
the central limit theorem and the Kolmogorov 0-1 law to prove that
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5. Let X, be an i.i.d. sequence with EX,, = p and Var(X,) = 0% < co. The
sample mean is defined by

_ 1 <&
Xn:E;Xk

By the strong law of large numbers it converges a.s. to pu. The sample
variance is defined by

One of the midterm problems shows it converges a.s. to o2.
Prove that
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converges in distribution to the standard normal distribution.

6. The Cauchy distribution has the density function
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(a) Compute the characteristic function of a Cauchy random variable. Hint:
contour integration.
(b) Show that if X,, is an i.i.d. sequence with the Cauchy distribution, then
for all n, %22:1 Xy has the Cauchy distribution. Note that the CLT does
not hold here. (The variance is infinite. In fact, the distribution does not
even have a first moment.)



