Math 563 - Fall '18 - Homework 7

Do 4 of the 5 problems

1. Let X_n be an i.i.d. sequence with a symmetric distibution. Suppose the distribution measure is absolutely continuous with respect to Lebesgue measure and the density is continuous and not equal to zero at 0. For p > 0, consider

$$\frac{1}{n^{\beta}} \sum_{j=1}^{n} \frac{1}{X_j |X_j|^{p-1}}$$

Show that it converges in distribution for a suitable choice of β (depending on p) and determine the limiting distribution. (It will of course depend on p.) Hint: we did the case of p = 1 as an example in class. Note that if Xhas a symmetric distibution, then so does $\frac{1}{X|X|p-1}$.

2. (from Durrett) Let X_n be i.i.d. with a Poisson distribution with mean 1. Large deviation theory says

$$\lim_{n} \frac{1}{n} ln(P(S_n \ge an)) = \gamma(a)$$

for a > 1. Find the function $\gamma(a)$. It is also possible to do this without large deviation theory. See Durrett exercise 3.1.4, where you will also find the answer.

3. Let X and Y be independent random variables. X has a Poisson distribution with mean $E[X] = \lambda$ and Y has a Poisson distribution with mean $E[Y] = \mu$. Let Z = X + Y. Find E[X|Z] and E[Z|X]. (One of these is easy.)

4. (from Durrett) Let $\Omega = \{a, b, c\}$. Given an example of a random variable X and σ -fields $\mathcal{F}_1, \mathcal{F}_2$ such that

$$E[E[X|\mathcal{F}_1]|\mathcal{F}_2] \neq E[E[X|\mathcal{F}_2]|\mathcal{F}_1]$$

5. (from Durrett) Define $var[X|\mathcal{F}]$ to be $E[X^2|\mathcal{F}] - E[X|\mathcal{F}]^2$. Prove that

$$var(X) = E[var[X|\mathcal{F}]] + var(E[X|\mathcal{F}])$$

(This is short).