
Math 563 - Fall ’21 - Solutions for Final

Do 5 of the 6 problems. Do not turn in 6 problems.

1. Let Xn be an i.i.d. sequence of random variables. Each Xn has an
exponential distribution with parameter λ. So its density is λ exp(−λx) for
x ≥ 0. Prove that

lim sup
n→∞

Xn

lnn
=

1

λ
a.s.

Hint: Given a c > 0, what can you say about P (Xn

lnn
≥ c i.o.).

Solution: Compute

P (
Xn

lnn
≥ c) =

∫ ∞
c lnn

λe−λxdx = n−λc

So
∑

n P (Xn

lnn
≥ c) is ∞ if λc ≤ 1 and is finite if λc > 1. So by the Borel-

Cantelli lemma, P (Xn

lnn
≥ c i.o.) = 1 if λc ≤ 1 and equals 0 if λc > 1.

In particular P (Xn

lnn
≥ 1/λ i.o.) = 1. If Xn

lnn
is ≥ 1/λ infinitely often, then

lim supn
Xn

lnn
is ≥ 1/λ. So P (lim supn

Xn

lnn
≥ 1/λ) = 1.

Now let c > 1/λ. So P (Xn

lnn
≥ c i.o.) = 0, i.e., with probability one,

Xn

lnn
≥ c only a finite number of times. If Xn

lnn
≥ c only a finite number of

times, then lim supn
Xn

lnn
≤ c. So P (lim supn

Xn

lnn
≤ c) = 1. This is true for all

c > 1/λ, but note that the exceptional set of probability zero can depend on c.
Consider the sequence ck = 1/λ+ 1/k. The events Ek = {lim supn

Xn

lnn
≤ ck}

are decreasing, and their intersection is the event {lim supn
Xn

lnn
≤ 1/λ}. By

continuity of the probability measure

P (lim sup
n

Xn

lnn
≤ 1/λ) = lim

k
P (lim sup

n

Xn

lnn
≤ ck) = 1

Combining this with the result at the end of the previous paragraph yields
P (lim supn

Xn

lnn
= 1/λ) = 1.

2. Let An be a sequence of independent events such that limn→∞ P (An)
exists and is not 0 or 1. Prove that

1√
n

n∑
k=1

[1Ak
− P (Ak)]
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converges in distribution to a normal random variable and find the mean and
variance of this limiting normal random variable.
Solution: Let p = limn P (An). We use the Lindeberg-Feller theorem. Let

Xn,m =
1√
n

[1Am − P (Am)]

Note that E[Xn,m] = 0. Since the An are independent, for each n the family
{Xn,m : 1 ≤ m ≤ n} is independent. We need to check the conditions for the
theorem:

EX2
n,m =

1

n
P (Am)[1− P (Am)]

Since P (Am)→ p, we have

n∑
m=1

EX2
n,m =

1

n

n∑
m=1

P (Am)[1− P (Am)]→ p(1− p)

Now let ε > 0 and consider the indicator function 1|Xn,m|≥ε.
Since |1An,m − P (An,m)| ≤ 1, for n sufficiently large (independent of m) this
indicator function is zero. So the condition

n∑
m=1

E[X2
n,m1|Xn,m|≥ε]→ 0

is satisfied. Thus we can apply the LF theorem and conclude

1√
n

n∑
k=1

[1Ak
− P (Ak)]

converges in distribution to a normal random variable with mean 0 and vari-
ance p(1− p).

3. Let Xn and X be random variables on the same probability space. Assume
that E[|Xn|] <∞ and E[|X|] <∞.

Here are four types of convergence: (1) pointwise convergence almost
surely, (2) convergence in probability, (3) convergence in distribution, and
(4) convergence in L1, i.e., E|Xn −X| converges to zero.

(a) For each of the four types of convergence prove or disprove that if Xn

converges to X then E[Xn] converges to E[X].
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Solution: None of the first three types of convergence imply E[Xn] converges
to E[X]. Let Ω = [0, 1] with Lebesgue measure for the probability measure.
Let Xn = n1[0,1/n]. Then Xn converges to 0 a.s. But E[Xn] = 1 while
E[0] = 0. Since converges almost surely implies the other two forms of
convergence this shows that none of the first three types of convegence implies
convergence of the expected values. Convergence in L1 does imply it since

|E[Xn]− E[X]| = |E[Xn −X]| ≤ E[|Xn −X|]

(b) For each of the four types of convergence prove or disprove that if Xn

converges to X then E[cos(Xn)] converges to E[cos(X)].

Solution: The function f(x) = cos(x) is bounded and continuous. So con-
vergence in distribution implies E[cos(Xn)] converges to E[cos(X)]. Since
convergence a.s. and convergence in probability both imply convergence in
distribution, it follows that any one of the first three types of convergence
implies convergence of the expected values. By Chebyshev’s inequality for
any ε > 0,

P (|Xn −X| ≥ ε) ≤ 1

ε
E[|Xn −X|]

So convergence in L1 implies convergence in probability and so implies E[cos(Xn)]
converges to E[cos(X)].

4. A random variable X has a geometric distribution if it takes values in the
non-negative integers and P (X = k) = (1 − p)kp, k = 0, 1, 2, · · ·. Here p is
a parameter between 0 and 1. Suppose you have a coin with probability of
heads equal to p. Flip it until you get heads for the first time. Let X be the
total number of flips. Then X has a geometric distribution.

Let α > 0. Let Xn be an independent sequence of random variables such
that Xn has the geometric distribution with p = α/n. Let Yn = Xn/n. Prove
that Yn converges in distribution and find the limiting distribution.

Solution: Let φn(t) be the characteristic function of Yn. The characteristic
function of the geometric distribution with parameter p is

peit

1− (1− p)eit
=

peit

1− eit + peit

So

φn(t) =
α
n
eit/n

1− eit/n + α
n
eit/n

=
αeit/n

n(1− eit/n) + αeit/n
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For all t, as n→∞ this converges to α
α−it . This is the characteristic function

of an exponential distribution with mean 1/α.
By the continuity theorem the point-wise convergence of the character-

istic functions implies that Yn converges in distribution to an exponential
distribution with mean 1/α.

5. Let ξn be i.i.d. RV’s. We assume they are integrable. Let Xn =
∑n

k=1 ξk.
Assume that E[ξn] 6= 0. Recall that this implies Xn is not a martingale.
Define Zn = exp(αXn) where α is a constant.

(a) Show that if there is an α such that exp(αξn) is integrable and

E[exp(αξn)] = 1

then Zn is a martingale.

Solution: We use Zn+1 = Zn exp(αξn+1). So

E[Zn+1|Fn] = E[Zn exp(αξn+1)|Fn]

Since Zn is Fn measurable, this is

= ZnE[exp(αξn+1)|Fn] = ZnE[exp(αξn+1)]

This last inequality follows from the independence of ξn+1 and Fn. This
equals Zn by the hypothesis, so Zn is a martingale.

(b) Now suppose ξn only takes on the values 1 and −1 and let p = P (ξn = 1).
Now Xn is a non-symmetric random walk. Let a, b be integers with a < 0 < b.
We start the walk at 0 and Xn is the position at time n. Let τ be the time
when we first hit a or b. Assume that the hypotheses of the optional stopping
theorem are satisfied. Find the probability the walk hits a before it hits b,
i.e., find P (Xτ = a).

Solution: Solve for α:

1 = E[exp(αξn)] = peα + (1− p)e−α

So

eα =
1− p
p

The optional stopping theorem applied to Zn says EZτ = EZ0 = 1. At
the stopping time, Zn is either a or b. So we have

EZτ = eαaP (Xτ = a) + eαbP (Xτ = b) = eαaP (Xτ = a) + eαb(1−P (Xτ = a))
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Solving for P (Xτ = a) we have

P (Xτ = a) =
1− eαb

eαa − eαb
=

1−
(

1−p
p

)b
(

1−p
p

)a
−
(

1−p
p

)b
6. Let X be a random variable with E[X2] < ∞. The conditional variance
of X given F is the random variable defined by

V ar(X|F) = E[X2|F ]− (E[X|F ])2

Let Xk be an independent sequence of random variables with E[X2
k ] < ∞.

Define Sn =
∑n

k=1Xk, and let Fn be the σ-field generated by X1, X2, · · · , Xn.
Prove that V ar(Sn+1|Fn) = V ar(Xn+1) a.s.

Solution: Let µ be the mean of Xn+1 and σ2 its variance. Note that
EX2

n+1 = σ2 + µ2.

E[Sn+1|Fn] = E[Sn +Xn+1|Fn] = Sn + µ

and

E[S2
n+1|Fn] = E[(Sn+Xn+1)

2|Fn] = E[S2
n+2SnXn+1+X

2
n+1|Fn] = S2

n+2Snµ+σ2+µ2

So
V ar(Sn+1|Fn) = S2

n + 2Snµ+ σ2 + µ2 − (Sn + µ)2 = σ2
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