Math 563-Fall 21 - Homework 2

1. (from Resnick, slightly modified) Let X_{n} be a sequence of RV's on (Ω, \mathcal{F}, P). Define

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

Let $\tau=\inf \left\{n>0: S_{n}>0\right\}$. Note that τ may sometimes be ∞.
(a) Prove τ is a random variable, i.e., it is measurable. Note that τ takes values in the extended reals, so by measurable I mean measurable with respect to the Borel sets in the extended reals. Hint: note that τ only takes on a countable number of values (the positive integers and ∞). First prove that it is enough to show that $\tau^{-1}(n) \in \mathcal{F}$ when n is one of these values.
(b) (optional - will not be graded) Define X to be S_{τ} when τ is finite and 0 when $\tau=\infty$. Prove X is a random variable.
2. (from Durrett) Suppose $E Y=0$ and the variance σ^{2} of Y is finite. Let $a>0$. Prove

$$
P(Y \geq a) \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}
$$

Hint: apply Chebyshev with $\phi(y)=(y+b)^{2}$ and optimize your result over b. 3. Let $X_{1}, X_{2}, \cdots, X_{n}$ be RV's such that the joint distribution $\mu_{X_{1}, X_{2}, \cdots, X_{n}}$ is absolutely continuous with respect to Lebesgue measure on \mathbb{R}^{n}. So there is a measurable function $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that for Borel sets A in \mathbb{R}^{n}

$$
P\left(\left(X_{1}, X_{2}, \cdots, X_{n}\right) \in A\right)=\int_{A} f\left(x_{1}, x_{2}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

Suppose there are non-negative measurable functions $g_{1}, g_{2}, \cdots, g_{n}$ on \mathbb{R} such that

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right) \cdots g_{n}\left(x_{n}\right)
$$

Prove that $X_{1}, X_{2}, \cdots, X_{n}$ are independent. Note that it is not assumed that the g_{i} have integral equal to 1 .

Do one of the two problems below labelled 4.

4. (from Durrett)
(a) Let X and Y be independent random variables which take values in the integers. Prove that the distribution of $X+Y$ is given by

$$
P(X+Y=n)=\sum_{m=-\infty}^{\infty} P(X=m) P(Y=n-m)
$$

(b) X has a Poisson distribution with parameter $\lambda>0$ if it takes on the values $0,1,2, \cdots$ and

$$
P(X=n)=\frac{e^{-\lambda} \lambda^{n}}{n!}
$$

Show that if X and Y are independent random variables, X has a Poisson distribution with parameter λ and Y has a Poisson distribution with parameter μ, then $X+Y$ has a Poisson distribution. What is the parameter for $X+Y$?
4. (from Durrett) Let $\Omega=(0,1), \mathcal{F}$ be the Borel sets in $(0,1)$, and let P be Lebesgue measure on $(0,1)$. For $n=1,2, \cdots$ define RV's by

$$
X_{n}(\omega)= \begin{cases}0 & \text { if }\left[2^{n} \omega\right] \text { is even } \\ 1 & \text { if }\left[2^{n} \omega\right] \text { is odd }\end{cases}
$$

where $[x]$ is the largest integer less than or equal to x. Note that $0 . X_{1} X_{2} X_{3} \ldots$ is the binary expansion of ω. We would like to prove that the $\left\{X_{n}\right\}_{n=1}^{\infty}$ are independent random variables. You are welcome to prove this, but writing it out can involve a lot of notation, so for this problem you need only prove that they are pairwise independent, i.e., for any $n \neq k$, the RV's X_{n} and X_{k} are independent. Note that this gives a rigorous construction of the probability space for flipping a fair coin infinitely many times.

The remaining problems are not to be turned in. They are included to make connections with the probability you see in a course like MATH/STAT 564 and cover some material from such a course that we do not cover.

The change of variables theorem says if X is a random variable and f a real-valued measurable function on the real line (with some condition on f), then

$$
E[f(X)]=\int_{\mathbb{R}} f(x) d \mu_{X}
$$

where μ_{X} is the distribution of X. The point of the next two problems is to get more explicit formulae that are amenable to computation in the cases that X is discrete or has a density.
5. Let X be a discrete real-valued random variable. Let x_{1}, x_{2}, \cdots be its values and let $p_{n}=P\left(X=x_{n}\right)$. Let g be any real valued function on the real line. Suppose that

$$
\sum_{n}\left|g\left(x_{n}\right)\right| p_{n}<\infty
$$

Prove that $g(X)$ is a random variable and

$$
E[g(X)]=\sum_{n} g\left(x_{n}\right) p_{n}
$$

Note that I did not say that g was measurable.
6. Let X be a random variable which has a density $f(x)$. This means its distribution function $F(x)$ satisfies $F(x)=\int_{-\infty}^{x} f(u) d u$, i.e., its distribution is $f(x)$ times Lebesgue measure. Let $g(x)$ be a real-valued measurable function on the real line such that

$$
\int_{-\infty}^{\infty}|g(x)| f(x) d x<\infty
$$

Prove that

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

where the integrals with respect to $d x$ are integration with respect to Lebesgue measure.
7. (564 discrete RV's) Let X be a discrete RV, x_{1}, x_{2}, \cdots its values and $p_{n}=P\left(X=x_{n}\right)$. The function $f(x)$ which is p_{n} at x_{n} and is 0 at points not equal to one of the x_{n} is often called the "probability mass function" in 564 level probability courses.

Suppose we have a coin with probability p of heads. (p is not necessarily $1 / 2$.) The following discrete RV's are of interest:
Binomial: Fix a positive integer n. Flip the coin n times and let X be the number of heads. So X can be $0,1,2, \cdots, n$.
Geometric: Flip the coin until you get heads for the first time. Let X be the number of tails. (Warning: depending on the author the definition of X is sometimes taken to be the total number of flips, including the final one that gave heads.) So the possible values of X are the nonnegative integers.

Negative binomial: Fix an integer r. Flip the coin until we get heads for the r th time. Let X be the total number of tails. So the possible values of X are the nonnegative integers.

For each of these find the probability mass function and the expected value of X.
8. (564 continuous RV's) In a 564 level course, "continuous RV" usually means that the distribution of the RV is absolutely continuous with respect to Lebesgue measure and so is given by $f(x) d x$. (Having a density implies the distribution function is continuous, but the converse is very false.) Here are three common "continuous" RV's.
Uniform: We say X is uniform on $[a, b]$ if $f(x)=\frac{1}{b-a}$ for $a \leq x \leq b$ and $f(x)=0$ otherwise.
Exponential: We say X has an exponential distribution if $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ and $f(x)=0$ for $x<0$. Here λ is a positive parameter.
Normal: We say X has a normal distribution if

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Here μ is a real parameter and σ^{2} is a positive parameter.
Find the expected value of each of these random variables.
9. Let X be a random variable with a normal distribution. Find the density function of X^{2}. Hint: first find an expression for the distribution function of X^{2}.

