Math 563 - Fall 21 - Homework 4

1. (from Durrett) Let X_{n} be an i.i.d. sequence of non-negative random variables that represent the lifetimes of a sequence of identical light bulbs. Let Y_{n} be another i.i.d. sequence of non-negative random variables. Y_{n} is the time we must wait after the nth bulb burns out before it is replaced. (We also assume $\left\{X_{n}, Y_{n}: n=1,2,3, \cdots\right\}$ is independent.) Assume that $E X_{1}$ and $E Y_{1}$ are both finite. Let W_{t} be the amount of time in $[0, t]$ that we have a working light bulb. Prove that

$$
\frac{W_{t}}{t} \rightarrow \frac{E\left[X_{1}\right]}{E\left[X_{1}\right]+E\left[Y_{1}\right]} \quad \text { a.s. }
$$

2. Let X_{n} be an independent sequence of RV's.
(a) Prove that the RV's $\lim \sup _{n \rightarrow \infty} X_{n}$ and $\liminf _{n \rightarrow \infty} X_{n}$ are constant with probability one.
(b) Let $S_{n}=\sum_{k=1}^{n} X_{k}$. Prove that the following event has probability zero or one.

$$
\left\{\omega: \frac{S_{n}}{n} \rightarrow 0\right\}
$$

3. Convergence in distribution does not imply convergence in probability. But we do have the following result. Prove that if $X_{n} \Rightarrow c$ where c is a constant, then $X_{n} \rightarrow c$ in probability.
4. (from Durrett) Let X_{n}, X be integer valued RV's. Prove that $X_{n} \Rightarrow X$ if and only if for all integers m,

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=m\right)=P(X=m)
$$

5. (from Durrett, converging together lemma) It is not true in general that if $X_{n} \Rightarrow X$ and $Y_{n} \Rightarrow Y$ then $X_{n}+Y_{n} \Rightarrow X+Y$. But we do have the following. If $X_{n} \Rightarrow X$ and $Y_{n} \Rightarrow c$, where c is a constant then $X_{n}+Y_{n} \Rightarrow X+c$. A useful consequence of this result is that if $X_{n} \Rightarrow X$ and $Z_{n}-X_{n} \Rightarrow 0$ then $Z_{n} \Rightarrow X$.
