Math 565a - Homework 4 (corrected March 9)

1. Let X_{n} be an i.i.d. sequence with finite first and second moments. Let $S_{n}=\sum_{k=1}^{n} X_{k}$, so S_{n} is a random walk. We saw in class that S_{n} is a martinagle if and only if $E X_{n}=0$. When the mean is not zero, we can still get a related martingale, namely $S_{n}-n \mu$ where $\mu=E X_{1}$. Find c_{n} and d_{n} so that

$$
Y_{n}=S_{n}^{2}+c_{n} S_{n}+d_{n}
$$

is a martingale. (c_{n} and d_{n} will depend on n and the first and second moments of X_{1}.)
2. Let X_{n} and Y_{n} be \mathcal{F}_{n} submartingales. Let $Z_{n}=\max \left\{X_{n}, Y_{n}\right\}$. Prove Z_{n} is an \mathcal{F}_{n} submartingale.
3. Let X_{n} and Y_{n} be \mathcal{F}_{n} supermartingales. Let τ be an \mathcal{F}_{n} stopping time which is finite almost surely. Assume $X_{\tau} \geq Y_{\tau}$ a.s. Define

$$
Z_{n}= \begin{cases}X_{n} & \text { if } n \leq \tau \\ Y_{n}, & \text { if } n>\tau\end{cases}
$$

Prove that Z_{n} is an \mathcal{F}_{n} supermartingale.
4. (Polya urn) An urn starts with r red balls and g green balls. We draw a ball at random and replace it with m balls of the same color. We repeat this process. Let X_{n} be the number of red balls at time n, Y_{n} the number of green balls at time n and

$$
R_{n}=\frac{X_{n}}{X_{n}+Y_{n}}
$$

Show that R_{n} is a martingale.
5. (a) Let S_{n} be a random walk whose steps are integrable and have a nonnegative mean. So S_{n} is a submartingale. Find the Doob decomposition of S_{n}.
(b) Let $B_{m} \in \mathcal{F}_{m}$. Assume that the B_{m} are independent of \mathcal{F}_{m-1}. (This was missing in the original version of the problem, and in my first corrected version I mistakenly said the B_{m} are independent of each other.) Define

$$
X_{n}=\sum_{k=1}^{n} 1_{B_{k}}
$$

Show X_{n} is a submartingle and find the Doob decomposition of X_{n}.
6. Note : this problem has been significantly changed since the original version.
(a) Let X_{n} be i.i.d. and $S_{n}=\sum_{k=1}^{n} X_{k}$. So S_{n} is a random walk. Assume that $E\left[\exp \left(\alpha X_{1}\right)\right]<\infty$ for all real α. Define for real α

$$
Z_{n}=\exp \left[\alpha S_{n}+n c\right]
$$

Show that for a suitably chosen constant c, Z_{n} is a martingale.
(b) Consider the simple symmetric one-dimensional random walk. Let $a \in \mathbb{Z}$.

Define

$$
\tau=\inf \left\{n: S_{n}=a\right\}
$$

Find the moment genertating function of τ, i.e., find $E[\exp (t \tau)]$ for $t<0$.

