Math 565a-Homework 5

1. In some problems the process itself is not a Markov process, but one can construct a closely related Markov process by "enlarging the state space." Then you can apply the theory of Markov processes to your problem. Here is a simple example.

We work on the lattice \mathbb{Z}^{2}. We generate a sample of the process as follows. Take $X_{0}=0$. Having generated $X_{1}, X_{2}, \cdots, X_{n}$, consider the four lattice sites that are a distance 1 from X_{n}. One of them is X_{n-1}. Take X_{n+1} to be one of the other three with equal probability $1 / 3$. The filtration is the natural one: $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \cdots, X_{n}\right)$. One can describe this process as a random walk that is not allowed to "backtrack."
(a) Show that X_{n} is not a Markov process.
(b) Let Y_{n} be the random vector $\left(X_{n-1}, X_{n}\right)$ for $n=1,2, \cdot$. The filtration is the same as before, or equivalently $\mathcal{F}_{n}=\sigma\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)$. For the original process the state space is \mathbb{Z}^{2}. for the Y_{n} process it is $\mathbb{Z}^{2} \times \mathbb{Z}^{2}$. Show that Y_{n} is a Markov process.
2. (Durrett 1.6, p. 284) Fix a positive integer N. Let ξ_{1}, ξ_{2}, \cdots be i.i.d. where each ξ_{n} is uniformly distributed on $\{1,2, \cdots, N\}$. Consider the set $\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right\}$ of values that have occurred by time n. It is a subset of $\{1,2, \cdots, N\}$ and will eventually have repetitions. Let X_{n} be the number of distinct values that appear in this set. Show that this is a Markov process and find the transition probabilities.
3. (Durrett 1.7, p. 285) Let S_{n} be a simple random walk on \mathbb{Z} with $S_{0}=0$. Let $M_{n}=\max \left\{S_{k}: 0 \leq k \leq n\right\}$. Show that M_{n} is not a Markov process.
4. (Durrett 1.8, p. 285) Let $\theta, U_{1}, U_{2}, \cdots$ be independent with each random variable uniformly distribution on $[0,1]$. Define X_{n} by

$$
X_{n}= \begin{cases}+1 & \text { if } U_{n}<\theta \\ -1 & \text { if } U_{n} \geq \theta\end{cases}
$$

Then let $S_{n}=\sum_{k=1}^{n} X_{k}$. We can think of this as a sort of random walk. We first choose a "bias" θ. We then flip a coin with probability θ of heads and probability $1-\theta$ of tails to generate the random walk. (The bias does not change as we flip the coin.) Show that S_{n} is a Markov process which is not time homogeneous.
5. (Durrett 2.10, p. 290) Consider a Markov process with a countable state space S. Let $A \subset S$ such that $S \backslash A$ is finite. Assume that for each $x \notin A$,
$P_{x}\left(\tau_{A}<\infty\right)>0$. Let

$$
\tau_{A}=\inf \left\{n \geq 0: X_{n} \in A\right\}
$$

and let $g(x)=E_{x} \tau_{A}$. Let $p(x, y)$ be the transition probabilities. Show that

$$
g(x)=1+\sum_{y \in S} p(x, y) g(y)
$$

for $x \notin A$.
6. (the ballot problem) Let Y_{j} be i.i.d. with values in $\{0,1,2, \cdots\}$. Let $S_{n}=Y_{1}+\cdots+Y_{n}$. Fix N. The goal of this problem is to show

$$
P\left(S_{j}<j, 1 \leq j \leq N \mid S_{N}\right)=\left(1-\frac{S_{N}}{N}\right)^{+}
$$

Note that if $S_{N} \geq N$, the equation is trivially true. So you can assume $S_{N}<$ N. I showed in class that $X_{n}=S_{n} / n$ is a backwards martingale with respect to the filtration $\mathcal{F}_{n}=\sigma\left(X_{k}, k \geq n\right)$. Define $\tau=\max \left\{k: S_{k} \geq k, 1 \leq k \leq N\right\}$ if this set is non-empty. If the set is empty we define $\tau=1$. We want to apply the optional sampling theorem to the backwards martingale and τ. If we go backward in time X_{n} is a martingale.
(a) Show that τ is a stopping time if we go backwards in time. (Part of the problem is to figure out what this means.)
(b) Show that $X_{\tau}=1_{G^{c}}$ where G is the event $\left\{S_{j}<j, 1 \leq j \leq N\right\}$.
(c) Apply the optional sampling theorem to get the result stated above.

