
Math 565a - Homework 7

1. (Durrett p. 293, 3.4) Use the strong Markov property to prove that
ρxz ≥ ρxyρyz.

2. (Durrett p. 299, 3.9) Let p(x, y) be an irreducible transition matrix for a
countable state space. A function f is superhamonic (with respect to p) if
f(x) ≥

∑
y p(x, y)f(y) for all x. Prove that the process is recurrent if and

only if every non-negative superharmonic function is constant.

3. (Durrett p. 309, p. 4.10) In chess the board is an 8 by 8 grid of squares.
The legal moves for a knight are to take two steps in one direction, then one
step in a direction perpendicular to the first two. (Only moves that land on
the board are allowed). A knight starts in the corner with no other pieces on
the board and randomly picks his moves. Find the mean of the return time
to the corner he starts from.

4. (Durrett p. 324, 5.9 and 5.10) In class we proved that if we have an
irreducible, positive recurrent, aperiodic Markov process on a countable state
space, then for any initial distribution the distribution of Xn converges in
total variation norm to the stationary distribution. But the theorem did
not say anything about the rate of convergence. The goal of this problem
is to prove the convergence is exponentially fast if the state space is finite.
So for both parts below assume that S is finite and p(x, y) is irreducible
and aperiodic. (Since S is finite these two properties imply it is positive
recurrent.)
(a) Prove there is a single N so that pN(x, y) > 0 for all x, y. (This follows
easily from a result in class.)
(b) Let τ be the coupling time used in the proof of the theorem above. Prove
that P (τ > n) ≤ crn for some constants c, r with r < 1. Use this to con-
clude the convergence of the distribution of Xn to the stationary probability
measure is exponentially fast.

5. In class we proved a theorem about the long time behavior of an irre-
ducible, positive recurrent Markov process with a countable state space S
for the case that the period d is greater than 1. The first part of the theorem
gave the limit

lim
n→∞

pnd+j(x, y)

Let µ be a probability measure on S. Suppose we start the process in µ, i.e.,
P (X0 = x) = µ(x). Prove that there are probability measures π0, π1, · · · , πd−1
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such that for each j = 0, 1, · · · d − 1, as n → ∞, µpnd+j converges to πj in
total variation norm. (If || || is the total variation norm, then ||µ1 − µ2|| =∑

x |µ1(x) − µ2(x)|.)

6. A commonly used Markov chain Monte Carlo algorithm is the Metropolis-
Hastings algorithm. Let S be a countable set, π a probability measure on S.
We assume that π(x) > 0 for all x ∈ S. Let t(x, y) be a transition function
on S. We do not assume any relation to π, although in applications the
structure of t is often motivated by the structure of S and π. Define

α(x, y) = min{
π(y)t(y, x)

π(x)t(x, y)
, 1}

and then define a new transition matrix

p(x, y) = α(x, y)t(x, y) + (1 − α(x, y))δx,y

where δx,y is 1 if x = y and 0 if x 6= y. Show that π is a stationary measure
for p.

Comments: In applications π is often of the form π(x) = µ(x)/N where
µ(x) is a finite probability measure with an explicit, relatively simple for-
mula for µ(x). The normalization factor N is usually impossibly difficulty
to compute. However, the above only requires π(y)/π(x) = µ(y)/µ(x). So
you do not have to compute N . The formula for p(x, y) can be described as
follows. If we are in state x, we use the transition probabilities t(x, y) to pick
a “proposed” state y to jump to. We then compute α(x, y) and make the
jump with probability α(x, y) (“accept the proposed move”) and just stay in
the state x with probability 1 − α(x, y) (“reject the proposed move”).

7. (Durrett p. 332, p. 6.11) Prove that a Harris chain with a stationary
probability measure must be recurrent. Hint: We proved (or will prove) in
class that X̄n is recurrent if and only if

∑
∞

n=1
p̄n(α, α) = ∞. Use this fact

and mimic the proof of the following theorem from class: For a countable
state space if there is a stationary probability measure π then all states y
with π(y) > 0 are recurrent.
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