
Math 565b - Homework 4

1. Consider the semigroup

T (t)f(x) = f(x + t) (1)

Find the generator of T (t). Take the Banach space to be C0(R).

2. Consider a generalized Poisson process with Yk = ±1 with probability 1/2.
This is like a Poisson process in which instead of always going up by 1 when
it jumps, the process either goes up or down by 1 (with equal probability)
when it jumps. Recall that the generalized Poisson process Xt is defined by

Xt =
Nt∑
k=1

Yk (2)

where Yk is iid and Nt is a Poisson process with rate λ.
(a) Find the generator of the semigroup associated with this process.
(b) The theory we have developed shows that this generator must be a dis-
sipative operator. Prove this directly using your answer to (a).

3. Let Xt be a Brownian motion with EXt = νt and var(Xt) = σ2t where
ν and σ2 are constants. (Note that you can obtain Xt by taking Bt to be a
standard Brownian motion and letting Xt = σ2Bt +µt. ) Find the generator
of the semigroup associated with this Markov process.

4. Consider a Gaussian process with mean zero and covariance C(s, t). It is
defined for t ≥ 0. Show that the process is a Markov process if and only if
the covariance satisfies:

C(s, u)C(t, t) = C(s, t)C(t, u) (3)

for 0 ≤ s < t < u.

5. Let Bt be standard Brownian motion. Let T (t) be the associated semi-
group and Rλ its resolvent. Show that the resolvent is an integral operator,
i.e.,

Rλf(x) =

∫
∞

−∞

rλ(x, y)f(y)dy (4)

and

rλ(x, y) =
1√
2λ

exp(−
√

2λ|x − y|) (5)
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6. Let P (t, x, dy) be a time homogeneous transition function. In particular,
it satisfies the Chapman-Kolmogorov eq. Let α be a probability measure on
S. For 0 < t1 < t2 < · · · < tn, define the finite dimension distribution of
X0, Xt1 , · · · , Xtn by

P (X0 ∈ B0, Xt1 ∈ B1, · · · , Xtn ∈ Bn) =
∫

B0

∫
B1

· · ·
∫

Bn−1

P (tn − tn−1, xn−1, Bn)P (tn−1 − tn−2, xn−2, dxn−1) · · ·P (t1, x0, dx1)α(dx0)

where B0, B1, · · · , Bn are measurable subsets of the state space S. Use the
Daniell-Kolmogorov extension theorem to show there is a stochastic process
with these finite dimensional distributions. Note that we proved in class
that for a Markov process with transition function P , the finite dimensional
distributions are given by the above equation.

7. Let Xt be a Markov process with transition function P (t, x, B). We let
S∆ = S ∪ {∆} with the topology defined as we did in class. So if S is
compact, ∆ is an isolated point and if S is not compact, S∆ is the one point
compactification of S. Let A ⊂ S be a Borel set. Let

τA = inf{t : Xt ∈ A} (6)

Take an initial distribution α such that α(A) = 1. Define a new process Yt

by Yt = Xt for t < τA and Yt = ∆ for t ≥ τA. Show Yt is a Markov process.
It is usually described as the process Xt killed when it exits A.

8. For a topological space X, DX [0,∞) denotes the space of functions from
[0,∞) into X which are right continuous and have left hand limits at all
t. Let S be a locally compact Hausdorff space. Let D be a dense subset
of C0(S). Let x : [0,∞) → S. Prove that x ∈ DS[0,∞) if and only if
f(x) ∈ DR[0,∞) for all f ∈ D.

9. Let S be a locally compact, Hausdorff space which is separable. Let
D ⊂ C0(S) be dense. Prove that D has a countable subset which is still
dense in C0(S).

10. Let Xt be a Markov process with transition function P (t, x, B). Let
f : S → R be a bounded random variable. Prove t → f(Xt) is right
continuous from [0,∞) into L1(Ω, P ). (We needed this to apply the Doob
regularity thm.)
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