

Math 565b - Homework 4

1. Consider the semigroup

$$T(t)f(x) = f(x + t) \quad (1)$$

Find the generator of $T(t)$. Take the Banach space to be $C_0(\mathcal{R})$.

2. Consider a generalized Poisson process with $Y_k = \pm 1$ with probability $1/2$. This is like a Poisson process in which instead of always going up by 1 when it jumps, the process either goes up or down by 1 (with equal probability) when it jumps. Recall that the generalized Poisson process X_t is defined by

$$X_t = \sum_{k=1}^{N_t} Y_k \quad (2)$$

where Y_k is iid and N_t is a Poisson process with rate λ .

- (a) Find the generator of the semigroup associated with this process.
- (b) The theory we have developed shows that this generator must be a dissipative operator. Prove this directly using your answer to (a).

3. Let X_t be a Brownian motion with $EX_t = \nu t$ and $\text{var}(X_t) = \sigma^2 t$ where ν and σ^2 are constants. (Note that you can obtain X_t by taking B_t to be a standard Brownian motion and letting $X_t = \sigma^2 B_t + \nu t$.) Find the generator of the semigroup associated with this Markov process.

4. Consider a Gaussian process with mean zero and covariance $C(s, t)$. It is defined for $t \geq 0$. Show that the process is a Markov process if and only if the covariance satisfies:

$$C(s, u)C(t, t) = C(s, t)C(t, u) \quad (3)$$

for $0 \leq s < t < u$.

5. Let B_t be standard Brownian motion. Let $T(t)$ be the associated semigroup and R_λ its resolvent. Show that the resolvent is an integral operator, i.e.,

$$R_\lambda f(x) = \int_{-\infty}^{\infty} r_\lambda(x, y) f(y) dy \quad (4)$$

and

$$r_\lambda(x, y) = \frac{1}{\sqrt{2\lambda}} \exp(-\sqrt{2\lambda}|x - y|) \quad (5)$$

6. Let $P(t, x, dy)$ be a time homogeneous transition function. In particular, it satisfies the Chapman-Kolmogorov eq. Let α be a probability measure on S . For $0 < t_1 < t_2 < \dots < t_n$, define the finite dimension distribution of $X_0, X_{t_1}, \dots, X_{t_n}$ by

$$P(X_0 \in B_0, X_{t_1} \in B_1, \dots, X_{t_n} \in B_n) = \int_{B_0} \int_{B_1} \cdots \int_{B_{n-1}} P(t_n - t_{n-1}, x_{n-1}, B_n) P(t_{n-1} - t_{n-2}, x_{n-2}, dx_{n-1}) \cdots P(t_1, x_0, dx_1) \alpha(dx_0)$$

where B_0, B_1, \dots, B_n are measurable subsets of the state space S . Use the Daniell-Kolmogorov extension theorem to show there is a stochastic process with these finite dimensional distributions. Note that we proved in class that for a Markov process with transition function P , the finite dimensional distributions are given by the above equation.

7. Let X_t be a Markov process with transition function $P(t, x, B)$. We let $S^\Delta = S \cup \{\Delta\}$ with the topology defined as we did in class. So if S is compact, Δ is an isolated point and if S is not compact, S^Δ is the one point compactification of S . Let $A \subset S$ be a Borel set. Let

$$\tau_A = \inf\{t : X_t \in A\} \tag{6}$$

Take an initial distribution α such that $\alpha(A) = 1$. Define a new process Y_t by $Y_t = X_t$ for $t < \tau_A$ and $Y_t = \Delta$ for $t \geq \tau_A$. Show Y_t is a Markov process. It is usually described as the process X_t killed when it exits A .

8. For a topological space X , $D_X[0, \infty)$ denotes the space of functions from $[0, \infty)$ into X which are right continuous and have left hand limits at all t . Let S be a locally compact Hausdorff space. Let D be a dense subset of $C_0(S)$. Let $x : [0, \infty) \rightarrow S$. Prove that $x \in D_S[0, \infty)$ if and only if $f(x) \in D_{\mathcal{R}}[0, \infty)$ for all $f \in D$.

9. Let S be a locally compact, Hausdorff space which is separable. Let $D \subset C_0(S)$ be dense. Prove that D has a *countable* subset which is still dense in $C_0(S)$.

10. Let X_t be a Markov process with transition function $P(t, x, B)$. Let $f : S \rightarrow \mathcal{R}$ be a bounded random variable. Prove $t \rightarrow f(X_t)$ is right continuous from $[0, \infty)$ into $L^1(\Omega, P)$. (We needed this to apply the Doob regularity thm.)