Monte Carlo Methods - Spring 16 - Homework 1

1. This is based on an example in the review article by Kroese. Consider the small network shown in the figure.

The random variables T_{i} are the times it takes to traverse that bond. The times T_{i} are uniformly distributed but with different ranges:
T_{1} uniform on $[0,1]$
T_{2} uniform on $[0,2]$
T_{3} uniform on $[0,3]$
T_{4} uniform on $[0,1]$
T_{5} uniform on $[0,2]$
We want to find the quickest path from A to B . Let X be the total time it takes to traverse this quickest path. We want to compute the mean $\mu=E[X]$. (a) Using $N=10,000$ samples, use direct Monte Carlo to estimate μ. Using your data estimate σ^{2} and find a 95% confidence interval for your estimate. As a check on your simulation, the exact answer is know to be $\frac{1339}{1440} \approx 0.92986$. (b) Repeat what you did in (a) 100 times and see how many times your confidence interval contains the exact value of μ.
2. (corrected $2 / 9$) In class and in the notes I claimed that if you apply the delta method to find the variance of the estimator $\hat{\theta}=\bar{Y} / \bar{X}$ for $\theta=$ $E[Y] / E[X]$, then the variance of $\hat{\theta}$ is approximately

$$
\operatorname{var}(\hat{\theta}) \approx \frac{1}{n} \frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{\theta} X_{i}\right)^{2}}{n \bar{X}^{2}}
$$

where \bar{X} and \bar{Y} are the sample means for X and Y and $\hat{\theta}=\bar{Y} / \bar{X}$. For the general estimator $\hat{\theta}=f\left(\hat{\mu}_{1}, \cdots, \hat{\mu}_{d}\right)$ we found from the delta method that the variance is $(\hat{\nabla} f, \hat{\Sigma} \hat{\nabla} f) / n$. Use this general result to derive the equation above, i.e., show

$$
(\hat{\nabla} f, \hat{\Sigma} \hat{\nabla} f)=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{\theta} X_{i}\right)^{2}}{n \bar{X}^{2}}
$$

3. Let X_{1}, \cdots, X_{n} be our sample. Define

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

The kurtosis of X is

$$
\kappa=\frac{E\left[(X-\mu)^{4}\right]}{\sigma^{4}}
$$

For a normal RV the kurtosis is 3 . So $\kappa-3$ is sometimes called the excess kurtosis. Unfortunately sometimes the excess kurtosis is just called the kurtosis. In particular Owen does this.
(a) Find the variance of s^{2} in terms of σ^{2}, κ and n. I think the answer is

$$
\frac{1}{n}\left(\kappa \sigma^{4}-\frac{n-3}{n-1} \sigma^{4}\right)
$$

This is just a computation and rather tedious. You may want to skip this part and just do (b).
(b) Define

$$
\hat{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

This is just s^{2} with the $1 /(n-1)$ replaced by $1 / n$. Expanding out the square we can also write this as

$$
\hat{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}
$$

Now let $Y=X^{2}$. The variance of X is $E[Y]-E[X]^{2}$ which is $f(E[X], E[Y])$ where $f(x, y)=y-x^{2}$. The estimator $\hat{\sigma^{2}}$ is $\bar{Y}-\bar{X}^{2}=f(\bar{X}, \bar{Y})$. So we can use the delta method to find the variance of $\hat{\sigma^{2}}$. Carry out this computation and compare with the result in part (a).

